Giáo trình Cấu tạo động cơ ô tô

3.1. Giới thiệu chung

3.1.1. Chức năng

Là nguồn cung cấp động năng cho các hoạt động của ôtô: cung cấp mô men quay cho bánh đà, dẫn động các cơ cấu, hệ thống khác (hệ thống nhiên liệu, cơ cấu phân phối khí, hệ thống làm mát ).

3.1.2. Yêu cầu

- Hiệu suất làm việc cao.

- Làm việc ổn định.

- Không rung giật, ít gây tiếng ồn.

- Kích thước và trọng lượng nhỏ, công suất riêng lớn .

- Khởi động, vận hành, chăm sóc dễ dàng.

- Thành phần gây ô nhiễm môi trường nhỏ.

3.2. Thân máy, nắp máy, xy lanh và các te.

3.2.1. Thân máy

 a: Động cơ 1 hàng xylanh b: Động cơ chữ V

3.2.1.1. Chức năng

- Là nơi lắp đặt và bố trí hầu hết các cụm chi tiết của động cơ.

- Là nơi lấy nhiệt từ thành vách xylanh.

- Duy trì áp suất nén của piston và tiếp nhận áp suất nổ.

3.2.1.2. Phân loại

a). Phân loại theo kiểu làm mát

- Thân máy làm mát bằng nước: Thường ở động cơ ô tô, máy kéo .

- Thân máy làm mát bằng gió: Thường gặp ở động cơ xe máy.

b). Phân loại theo kết cấu kếu

- Thân xylanh – hộp trục khuỷu: Thân xylanh đúc liền hộp trục khuỷu.

- Thân máy rời: Thân xylanh làm rời với hộp trục khuỷu và lắp với nhau bằng bulông hay gugiông.

c). Phân loại theo tình trạng chịu lực khí thể:

- Thân xylanh hay xylanh chịu lực: Lực khí thể tác dụng lên lắp xylanh, qua gu giông nắp máy rồi chuyền xuống truyền xuống thân xylanh.

- Vỏ thân chịu lực: Lực khí thể chuyền qua gu giông xuống vỏ thân, xylanh hoàn toàn không chịu lực khí thể.

- Gugiông chịu lực: Lực khí thể hoàn toàn do gu giông chịu.

3.2.1.3. Đặc điểm cấu tạo:

Tùy thuộc vào phương pháp lắp đặt trục khuỷu trong hộp trục khuỷu mà thân máy có cấu tạo khác nhau.

 

doc 103 trang kimcuc 6020
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Cấu tạo động cơ ô tô", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Giáo trình Cấu tạo động cơ ô tô

Giáo trình Cấu tạo động cơ ô tô
Cấu tạo động cơ 
ô tôMỤC LỤC
CƠ CẤU SINH LỰC
3.1. Giới thiệu chung
3.1.1. Chức năng
Là nguồn cung cấp động năng cho các hoạt động của ôtô: cung cấp mô men quay cho bánh đà, dẫn động các cơ cấu, hệ thống khác (hệ thống nhiên liệu, cơ cấu phân phối khí, hệ thống làm mát).
3.1.2. Yêu cầu
- Hiệu suất làm việc cao.
- Làm việc ổn định.
- Không rung giật, ít gây tiếng ồn.
- Kích thước và trọng lượng nhỏ, công suất riêng lớn .
- Khởi động, vận hành, chăm sóc dễ dàng. 
- Thành phần gây ô nhiễm môi trường nhỏ. 
3.2. Thân máy, nắp máy, xy lanh và các te.
3.2.1. Thân máy 
	Hình 3.1. Thân máy
 a: Động cơ 1 hàng xylanh	 b: Động cơ chữ V
3.2.1.1. Chức năng
- Là nơi lắp đặt và bố trí hầu hết các cụm chi tiết của động cơ.
- Là nơi lấy nhiệt từ thành vách xylanh.
- Duy trì áp suất nén của piston và tiếp nhận áp suất nổ. 
3.2.1.2. Phân loại 
a). Phân loại theo kiểu làm mát 
- Thân máy làm mát bằng nước: Thường ở động cơ ô tô, máy kéo .
- Thân máy làm mát bằng gió: Thường gặp ở động cơ xe máy.
b). Phân loại theo kết cấu kếu 
- Thân xylanh – hộp trục khuỷu: Thân xylanh đúc liền hộp trục khuỷu.
- Thân máy rời: Thân xylanh làm rời với hộp trục khuỷu và lắp với nhau bằng bulông hay gugiông.
c). Phân loại theo tình trạng chịu lực khí thể:
- Thân xylanh hay xylanh chịu lực: Lực khí thể tác dụng lên lắp xylanh, qua gu giông nắp máy rồi chuyền xuống truyền xuống thân xylanh.
- Vỏ thân chịu lực: Lực khí thể chuyền qua gu giông xuống vỏ thân, xylanh hoàn toàn không chịu lực khí thể.
- Gugiông chịu lực: Lực khí thể hoàn toàn do gu giông chịu.
3.2.1.3. Đặc điểm cấu tạo: 
Tùy thuộc vào phương pháp lắp đặt trục khuỷu trong hộp trục khuỷu mà thân máy có cấu tạo khác nhau. 
 	b) 	c)
Hình 3.2. Các dạng thân máy.
a: Trục khuỷu treo 	b: Trục khuỷu đặt	 c: Trục khuỷu luồn
3.2.2. Xy lanh
3.2.2.1. Chức năng
- Kết hợp với piston và nắp máy tạo thành buồng cháy.
- Dẫn hướng cho piston. 
- Tản nhiệt cho buồng cháy. 
3.2.2.2. Yêu cầu 
- Làm bằng vật liệu có độ bền cao: Chống ăn mòn cơ học, ăn mòn hóa học tốt.
- Có hệ số nở dài thấp.
- Tản nhiệt tốt.
3.2.2.3. Phân loại
Gồm hai loại chính là xylanh liền thân và xylanh rời thân. Xylanh rời thân có sử dụng lót xy lanh trong đó có lót xylanh khô và lót xy lanh ướt.
a) 	 b)	 c)	 d)
 Hình 3.3. Các dạng xylanh
a: Xylanh liền thân	b,c: Lót xylanh khô	d: Lót xylanh ướt
3.2.2.4. Đặc điểm cấu tạo
Xylanh có cấu tạo dạng ống trụ. Mặt trong được gia công với độ bóng cao. Được làm cứng qua nhiều gia đoạn đảm bảo chịu ăn mòn cơ học và hóa học tốt. 
3.2.3. Nắp máy 
3.2.3.1 Chức năng: 
- Là chi tiết dùng để đậy kín buồng cháy.
- Kết hợp với xylanh, piston tạo thành buồng cháy.
- Là nơi lắp đặt nhiều bộ phận của động cơ như: Bugi, vòi phun, cụm xupap
- Kết hợp với đỉnh piston tạo thành dạng vòng xoáy của hỗn hợp khí cháy. 
3.2.3.2 Yêu cầu
- Có đủ sức bền cơ học, độ cứng vững khi chịu nhiệt độ cao và áp suất lớn nhưng trọng lượng phải nhỏ. 
- Tạo được dạng buồng cháy thích hợp.
- Dễ dàng tháo lắp, điều chỉnh, bảo dưỡng và sửa chữa các cơ cấu và chi tiết lắp trên nắp xylanh.
- Kết cấu đơn giản, dễ chế tạo và ứng suất nhiệt bé.
- Đảm bảo đậy kín buồng cháy, không bị lọt khí, rò nước. 
3.2.3.3. Phân loại
Gồm 3 loại chính: Nắp máy động cơ xăng, nắp máy động cơ diezel, nắp máy động cơ làm mát bằng gió.
a). Nắp máy động cơ xăng: 
Nắp máy có kết cấu tùy thuộc dạng buồng cháy.
- Nắp máy động cơ dùng cơ cấu phân phối khí dạng xupáp treo: Xupáp nạp lớn hơn xupap thải, bugi đặt ở hông buồng cháy, vách buồng cháy thường có khoang chứa nước làm mát, có khoang để luồn đũa đẩy dẫn động xupap, lỗ lắp gu giông lắp máy, lỗ dẫn nước làm mát. Động cơ xăng có tỷ số nén trung bình và thấp thường dùng loại lắp xylanh có buồng cháy hình chêm. Có tên là động cơ Ricacdo. 
- Nắp máy động cơ dùng cơ cấu phân phối khí dạng xupap đặt: Nắp máy cấu tạo đơn giản, khác so với nắp máy động cơ dùng cơ cấu phân phối khí dạng xúpap treo là bugi gần xupap nạp để tránh kích nổ. 
b). Nắp máy động cơ diezel
Phức tạp hơn nắp máy động cơ xăng, trên nắp máy phải bố trí rất nhiều chi tiết: đường nạp, thải, cụm xupap của cơ cấu phân phối khí dạng xupap treo. Ngoài ra còn rất nhiều chi tiết như: Vòi phun, buồng cháy phụ, van khí nén, bugi sấy
Động cơ nhiều xylanh nắp máy có thể làm rời cho từng xylanh hoặc cụm xylanh (gồm 1 vài xylanh). 
c). Nắp máy động cơ làm mát bằng gió.
Là kết cấu chịu ứng suẩt nhiệt lớn nhất, nắp xylanh được làm rời với lắp với hộp trục khuỷu bằng các gugiông. Nắp thường được chế tạo bằng hợp kim nhôm.
3.2.4. Các te
3.2.4.1. Chức năng
Chứa dầu bôi trơn, bảo vệ phía dưới thân máy, bảo vệ trục khuỷu và làm mát động cơ. 
3.2.4.2. Yêu cầu
 Đảm bảo cung cấp đủ dầu trong quá trình tăng tốc hoặc phát hành. 
3.2.4.3. Đặc điểm cấu tạo 
Đáy lắp với thân máy bằng vít, đệm máy làm bằng giấy nệm. Ngoài ra ở hai đầu cácte được lắp phớt ngăn chảy dầu. Đáy dầu phải có kết cấu có các tấm chắn sóng trong đáy dầu hoặc hai phái của bơm dầu để dầu không bị tạo sóng hoặc bị thổi khi bơm trong lúc động cơ tăng tốc hoặc dừng. Đáy cácte thường có hai bậc. Bậc trên ở ngay phía điểm thấp nhất của hành trình biên, trải dài khắp đáy dầu. Toàn bộ dầu trở về đáy dầu qua lưới trước khi trở về chỗ chứa ở bậc dưới. Các te thường chia làm 3 ngăn, ngăn giữa thường sâu hơn 2 ngăn bên.
Hình 3.4. Cácte ô tô
1: Đệm cácte .	3: Đáy chứa dầu bôi trơn	
2: Tấm ngăn	4: Lỗ bắt các te với than động cơ
3.3. Cụm piston
3.3.1. Piston
3.3.1.1. Chức năng 
- Cùng các chi tiết khác tạo thành buồng cháy.
- Nhận lực khí thể và truyền lực cho thanh truyền trong quá trình giãn nở.
- Nhận lực từ thanh truyền trong quá trình hút, nén hỗn hợp khí cháy và quá trình xả sản vật cháy. 
3.3.1.2. Yêu cầu
Đối với vật liệu làm piston cần có một số yêu cầu sau:
+ Có độ bền lớn khi nhiệt độ cao và tải trọng thay đổi.
+ Có trọng lượng riêng nhỏ.
+ Có hệ số giãn nở nhỏ nhưng hệ số dẫn nhiệt lớn
+ Chịu mài mòn tốt và chống ăn mòn hóa học của khí cháy.
+ Giá thành rẻ. 
3.3.1.3. Kết cấu
Để thuận lợi phân tích kết cấu có thể chia piston thành những phần như đỉnh, đầu, thân và chân piston.
Hình 3.5. Piston
 1: Đỉnh piston.
 2: Đầu piston	
 3: Thân piston
a). Đỉnh Piston
Cùng với xylanh, nắp xylanh tạo thành buồng cháy, về mặt kết cấu có các loại đỉnh sau:
- Đỉnh bằng: Có diện tích chịu nhiệt nhỏ, kết cấu đơn giản. Thường được sử dụng trong động cơ diezel buồng cháy dự bị và buồng cháy xoáy lốc (hình 3.6.a)
- Đỉnh lồi: Có sức bền lớn, đỉnh mỏng nhẹ nhưng diện tích chịu nhiệt lớn. Thường được sử dụng trong động cơ xăng 2 kỳ và 4 kỳ xupáp treo, buồng cháy chỏm cầu (hình 3.6.b và 3.6.c). 
- Đỉnh lõm: Có thể tạo xoáy lốc nhẹ, tạo thuận lợi cho quá trình hình thành hòa khí và cháy. Tuy nhiên sức bền kém và diện tích chịu nhiệt lớn. Loại đỉnh này thường được sử dụng ở cả động cơ xăng và động cơ diesel (hình 3.6.d).
- Đỉnh chứa buồng cháy: Thường gặp trên động cơ diesel (hình 3.6.e,f,g,h). Kết cấu buồng cháy phải thỏa mãn các yêu cầu sau tùy từng trường hợp cụ thể: 
+ Phải phù hợp với hình dạng buồng cháy và hướng của chùm tia phun nhiên liệu để tạo thành hỗn hợp tốt nhất.
+ Phải tận dụng được soáy lốc của không khí trong quá trình nén.
Hình 3.6. Các dạng buồng cháy đỉnh piston.
b). Đầu piston
Đường kính đầu piston thường nhỏ hơn đường kính thân vì thân là phần dẫn hướng của piston. Kết cấu đầu piston phải đảm bảo những yêu cầu sau:
- Bao kín tốt cho buồng cháy: Nhằm ngăn khí cháy lọt xuống cacte dầu và dầu bôi trơn từ cácte lọt lên trên buồng cháy.
- Tản nhiệt tốt cho piston: Để tản nhiệt tốt thường dùng các kết cấu đầu piston sau: 
+ Phần chuyển tiếp giữa đỉnh và đầu có bán kính chuyển tiếp R lớn.
+ Dùng gân tản nhiệt dưới đầu piston. 
+ Tạo rãnh ngăn nhiệt ở đầu piston để giảm nhiệt lượng chuyền cho séc măng thứ nhất. 
+ Làm mát cho đỉnh piston (trong động cơ cỡ lớn đỉnh piston thường được làm mát bằng dầu lưu thông như hình 3.7.f).
- Sức bền cao: Để tăng sức bền và độ cứng vững cho bệ chốt piston người ta người ta thiết kế các gân trợ lực.
 Hình 3.7. Các dạng đỉnh piston
c). Thân piston:
Có nhiệm vụ hướng cho piston chuyển động trong xylanh.
Chiều cao h của thân được quyết định bằng điều kiện áp suất tiếp xúc do lực ngang N gây ra phải nhỏ hơn áp suất tiếp xúc cho phép. 
P = [ p] 
Hình 3.8. Thân piston	Hình 3.9. Các nguyên nhân gây bó kẹt piston
- Vị trí tâm chốt: Phải được bố trí sao cho piston và xylanh mòn đều, đồng thời phải giảm va đập và gõ khi piston đổi chiều. Một số động cơ có tâm chốt lệch với tâm xylanh 1 giá trị e về phía nào đó sao cho lực ngang Nmax giảm để hai bên chịu lực N của piston và xylanh mòn đều. 
- Chống bó kẹt piston: Có nhiều nguyên nhân gây ra bó kẹt piston trong xylanh cụ thể: 
+ Lực ngang N.
+ Lực khí thể . 
+ Kim loại giãn nở . 
Do những nguyên nhân trên piston thường bị bó kẹt theo phương tâm chốt piston. Đối với piston bằng hợp kim nhôm hệ số nở dài lớn càng dễ sảy ra bó kẹt.
- Khắc phục hiện tượng bó kẹt: 
+ Chế tạo than piston có dạng ô van, trục ngắn trùng với tâm chốt.
+ Tiện vát 2 mặt ở bệ chốt chỉ để lại một cung α = 90 ÷ 100o để chịu lực mà không ảnh hưởng nhiều đến phân bố lực.
+ Xẻ rãnh nở trên thân piston. Khi xẻ rãnh người ta không xẻ hết để đảm bảo độ cứng vững cần thiết và thường xẻ chéo để tránh xylanh bị gờ xước. Khi nắp cần chú ý để bề mặt thân xẻ rãnh về phía lực ngang N nhỏ. Loại này có ưu điểm là khe hở lúc nguội nhỏ, động cơ không gõ khởi động dễ dàng. Nhược điểm độ cứng vững của piston giảm nên thường dùng ở động cơ xăng.
+ Đúc bằng hợp kim có độ nở dài nhỏ.
d). Chân piston: 
Hình 3.10 là một kết cấu điển hình của chân piston. Theo kết cấu này thân có vành đai để tăng độ cứng vững mặt trụ a cùng với mặt đầu của chân piston là chuẩn công nghệ khi gia công và là nơi điều chỉnh trọng lượng của piston sao cho đồng đều giữa các xylanh. 
 Hình 3.10. Chân piston
3.3.2. Chốt piston
3.3.2.1. Chức năng
Chốt piston là chi tiết nối chốt piston với thanh truyền đảm bảo điều kiện làm việc bình thường của động cơ.
3.3.2.2. Đặc điểm cấu tạo
Hình 3.11. Lắp cố định chốt piston trên đầu nhỏ thanh truyền và trên bệ chốt
Đa số các chốt piston có kết cấu đơn giản như dạng trụ rỗng. Các kiểu lắp ghép giữa chốt piston với piston, thanh truyền:
- Cố định chốt piston trên đầu nhỏ thanh truyền (hình 3.11 a). 
- Cố định chốt piston trên bệ chốt (hình 3.11. b). 
- Lắp tự do ở cả hai mối ghép (hình 3.12. a). Phương pháp này được dùng phổ biến ngày nay. Tuy nhiên phải giả quyết vấn đề bôi trơn ở cả hai mối ghép và phải có kết cấu hạn chế di chuyển dọc trục của chốt, thường dùng vòng hãm (hình 3.12.b) hoặc nút kim loại mềm có mặt cầu như hình 3.12.c. 
Hình 3.12. Lắp tự do chốt piston
- Các phương án bôi trơn: 
+ Đối với bệ chốt thường được khoan lỗ để dẫn dầu do xéc măng gạt dầu về (hình 3.13a) hoặc khoan lỗ hứng dầu như (hình 3.13b). 
+ Đối với thanh truyền người ta có thể bôi trơn bằng cách khoan lỗ hứng dầu hoặc bôi trơn cưỡng bức kết hợp làm mát đỉnh piston bằng dầu áp suất cao dẫn từ trục khuỷu dọc theo thanh truyền. 
Hình 3.13. Bôi trơn các mối ghép chốt piston.
3.3.3. Xéc măng 
Hình 3.14. Xéc măng.
3.3.3.1. Chức năng 
- Xéc măng khí để bao kín tránh lọt khí, còn xéc măng dầu ngăn dầu từ hộp trục khuỷu sục lên buồng cháy.
- Truyền phần lớn nhiệt độ từ đầu piston sang thành xylanh.
- Đưa dầu đi bôi trơn cho piston xylanh xécmăng.
3.3.3.2. Đặc điểm kết cấu
a). Xéc măng khí:
Xéc măng có kết cấu rất đơn giản là một vòng hở miệng hình 3.15.a. Kết cấu của xéc măng khí được đặc trưng bởi kết cấu của tiết diện và miệng của xéc măng.
- Về mặt tiết diện xécmăng khí:
 Hình 3.15. Kết cấu xéc măng khí.
+ Loại tiết diện chữ nhật (hình 3.15.b) có kết cấu đơn giản nhất, dễ chế tạo nhưng có áp suất riêng không lớn, thời gian rà khít với xylanh sau khi lắp rắp lâu. 
+ Loại có mặt côn (hình 3.15.c) có áp suất tiếp xúc lớn và có thể rà khít nhanh chóng với xylanh, tuy nhiên chế tạo phiền phức và đánh dấu khi lắp sao cho xéc măng đi xuống sẽ có tác dụng như một lưỡi cạo để gạt dầu. 
+ Để có đượng ưu điểm trên và tránh được những điều phiền phức đã nêu, người ta đưa ra kết cấu tiết diện không đối xứng bằng cách tiện vát tiết diện xéc măng (hình 3.15.d và e). Khi lắp các piston và xylanh, do có sức căng nên xéc măng bi vênh đi nên có tác dụng như một mặt côn. Khi lắp ráp phải chú ý: Nếu vát phía ngoài (hình 3.15.d) thì phải lắp hướng xuống phía dưới còn vát phía trong (hình 2.15.e) thì phải lắp hướng lên buồng cháy, nhằm tránh hiện tượng giảm lực căng của xéc măng do áp suất cao của khí lọt từ buồng cháy.
+ Loại hình thang – vát (hình 3.15.f) có tác dụng giữ muội than khi xéc măng co bóp do đường kính xylanh không hoàn toàn đồng đều theo phương dọc trục, do đó tránh được hiện tượng bó kẹt xéc măng trong rãnh của nó.
- Về kết cấu miệng:
+ Loại thẳng (hình 3.15.g) dễ chế tạo nhưng dễ lọt khí và sục dầu qua miệng.
+ Loại hình (hình 3.15.h) có thể khắc phục phần nào những nhược điểm trên.
+ Loại bậc ( hình 3.15.i) bao kín rất tốt nhưng khó chế tạo.
b). Xéc măng dầu: 
 Hình 3.16. Hiện tượng bơm dầu của xécmăng khí.
- Ở rãnh xécmăng dầu của piton có rãnh thoát dầu (hình 3.17). Một số xec măng dầu có kết cấu tiết diện dạng lưỡi cạo gạt dầu thường gặp trong thực tế. 
Hình 3.17. Xéc măng dầu tổ hợp
- Kết cấu của xécmăng dầu tổ hợp gồm 3 chi tiết riêng rẽ. Do có lò xo hình sóng ép hai vòng thép mỏng lên mặt đầu của rãnh nên xec măng khi làm việc không có khe hở mặt dầu. Do đó xec măng dầu tổ hợp có tác dụng ngăn dầu và giảm va đập rất tốt.
3.4. Cụm thanh truyền
3.4.1. Thanh truyền
3.4.1.1. Chức năng
- Thanh truyền là chi tiết nối giữa piston và trục khuỷu hoặc guốc trượt.
- Truyền lực từ piston xuống làm quay trục khuỷu.
- Biến chuyển động thẳng của piston thành chuyển động quay của trục khuỷu.
3.4.1.2. Kết cấu
Kết cấu thanh truyền gồm 3 phần là đầu nhỏ, đầu to và thân thanh truyền (hình 3.18). Sau đây ta xét kết cấu từng phần cụ thể.
Hình 3.18. Kết cấu thanh truyền
1: Bạc đầu nhỏ 5: Nửa trên thanh truyền	
2: Đầu nhỏ thanh truyền 6: Bạc đầu to thanh truyền
3: Thân thanh truyền 7: Nửa dưới thanh truyền
a). Đầu nhỏ
 	Kết cấu đầu nhỏ thanh truyền phụ thuộc vào kích thước chốt piston và phương pháp lắp ghép đầu nhỏ thanh truyền với chốt piston.
Hình 3.19. Kết cấu các dạng đầu nhỏ thanh truyền
- Đầu nhỏ thanh truyền thường có dạng trụ rỗng. 
- Trong động cơ cỡ lớn đầu nhỏ thanh truyền có dạng cung tròn đồng tâm, đôi khi có dạng ô van để tăng độ cứng vững.
- Trong động cơ xăng đầu nhỏ thanh truyền có dạng trụ mỏng.
- Ở một số động cơ người ta thường làm vấu lồi trên đầu nhỏ để điều chỉnh trọng tâm thanh truyền cho đồng đều gữa các xylanh (hình 3.19.b). 
- Các phương án bôi trơn khi đầu nhỏ thanh truyền nắp tự do với chốt piston:
+ Dùng rãnh hứng dầu (hình 2.19.c).
+ Bôi trơn cưỡng bức do dẫn dầu từ trục khuỷu theo thân thanh truyền (hình 2.19a).
+ Làm các rãnh chứa dầu ở bạc đầu nhỏ (hình 2.19d).
+ Dùng bi kim thay cho bạc lót (hình 2.19.e).
	Hình 3.20. Một số dạng kết cấu đầu nhỏ thanh truyền
- Khi chốt piston cố định trên đầu nhỏ thanh truyền: Đầu nhỏ phải có kết cấu kẹp chặt
b). Thân thanh truyền
- Tiết diện thân thanh truyền: Thường thay đổi từ nhỏ đến lớn kể từ đầu nhỏ đến đầu to.
Hình 3.21. Các loại tiết diện thân thanh truyền
- Tiết diện tròn (hình 2.20a) có dạng đơn giản, thường được dùng cho động cơ tàu thủy.
- Loại tiết ...  áp suất trong trường hợp áp suất trong ống phân phối lên cao mức không bình thường.
b). Van xả áp (bộ điều chỉnh áp suất)
Trong trường hợp hệ thống bị trục trặc áp suất nhiên liệu của ống phân phối cao hơn áp suất phun mong muốn thì van xả áp suất nhận được một tín hiệu từ ECU của động cơ để mở van và hồi nhiên liệu về bình nhiên liệu, do đó áp suất nhiên liệu trở về áp suất phun mong muốn.
Hình 7.2.18. Van xả áp
4). Vòi phun
Hình 7.2.19. Cấu tạo vòi phun 
1 - Lò xo vòi phun
2 - Van định lượng
3 - Lỗ tiết lưu đường dầu về
4 - Lõi của van điện từ
5 - Đường dầu hồi về
6 - Giắc nối
7 - Van điện từ
8 - Dầu có áp suất cao từ ống rail
9 - Van bi
 10 - Lỗ tiết lưu cung cấp
 11 - Van piston
 12 - Đường dẫn nhiên liệu
 13 - Khoang chứa nhiên liệu
 14 - Kim phun
Vòi phun của Commonrail khác với vòi phun của hệ thống nhiên liệu Diesel thong thường ở chỗ gồm 2 phần: 
- Phần trên là một van điện từ được điều khiển bởi EDU hoặc ECU.
- Phần dưới là phần vòi phun cũng khác với vòi phun thông thường, đó là có lò xo rất cứng mà ở vòi phun thông thường là một chốt tỳ khá dài.
Khi nhiên liệu được phân chia từ ống phân phối đến từng vòi phun thì nhiên liệu được dẫn từ ống dẫn sẽ đi đến van định lượng 2 thông qua lỗ cung cấp 10. Buồng điều khiển được nối với đường dầu về thông qua lỗ xả được mở bởi van xả 3.
Khi lỗ đóng, áp lực của dầu đặt lên đỉnh piston 11 cao hơn áp lực dầu tại thân ty kim. Kết quả là kim bị đẩy xuống dưới và làm kín lỗ phun với buồng đốt.
Khi van điện từ 7 đóng có dòng điện, lỗ xả 6 được mở ra. Điều này làm cho áp suất ở buồng điều khiển giảm xuống, kết quả là áp lực tác dụng lên piston cũng giảm theo. Khi áp lực dầu trên piston giảm xuống thấp áp lực tác dụng lên ty kim, thì ty kim mở ra và nhiên liệu được phun vào buồng đốt qua các lỗ phun. Kiểu điều khiển này dùng một hệ thống khuếch đại thủy lực vì lực cần thiết để mở kim thật nhanh không thể trực tiếp tạo ra nhờ van xả. Hoạt động của kim phun có thể chia làm 4 giai đoạn chính như sau:
- Khi kim phun đóng.
- Khi kim phun mở.
- Khi kim phun mở hoàn toàn.
- Khi kim phun đóng.
Hoạt động vòi phun:
*). Khi kim mở: Van điện từ được cấp dòng điện kích từ lớn để bảo đảm nó mở nhanh. Lực tác dụng bởi van điện từ lớn hơn lò xo lỗ xả và làm mở lỗ xả. Gần như tức thời dòng điện cao áp giảm xuống thành dòng nhỏ hơn chỉ đủ để tạo ra lực từ để giữ ty kim. Khi lỗ xả mở ra, nhiên liệu có thể chảy vào buồng điều khiển tràn vào khoang bên trên nó và từ đó trở lại thùng dầu qua đường dầu hồi. Lỗ xả làm mất cân bằng áp suất nên áp suất trong buồng điều khiển van giảm xuống, làm cho áp suất trong buồng điều khiển can thấp hơn áp suất trong buồng chứa của ty kim (vẫn còn bằng với áp suất của ống). Áp suất giảm đi trong buồng điều khiển van làm giảm lực tác dụng lên piston điều khiển nên kim mở ra và nhiên liệu bắt đầu phun.
Tốc độ mở kim phun được quyết định bởi sự khác biệt tốc độ dòng chảy giữa lỗ nạp và lỗ xả. Piston điều khiển tiến đến vị trí dừng phía trên nơi mà nó còn chịu tác dụng của đệm dầu được tạo bởi dòng chảy của nhiên liệu giữa lỗ nạp và lỗ xả. Kim phun giờ đây đã mở hoàn toàn và nhiên liệu được phun vào buồng đốt ở áp suất gần bằng với áp suất trong ống. Lực phân phối trong kim thì tương tự với giai đoạn mở kim.
 a b
Hình 7.2.20. Quá trình thực hiện phun
a: Khi kim phun mở b: Khi kim phun đóng
*). Khi kim phun đóng: Khi dòng qua van điện từ 7 bị ngắt, lò xo đẩy viên bi đóng kín lỗ xả lại. Lỗ xả đóng đã làm cho áp suất trong buồng điều khiển van tăng lên thông qua lỗ nạp. Áp suất này tương đương với áp suất trong ống van làm tăng lực tác dụng lên đỉnh piston điều khiển. Lực này cùng với lực của lò xo bây giờ cao hơn lực tác dụng của buồng chứa và ty kim đóng lại. Tốc độ đóng của ty kim phụ thuộc vào dòng chảy nhiên liệu qua lỗ nạp. 	
7.2.5. Hệ thống cung cấp nhiên liệu với bơm – vòi phun kết hợp điều khiển điện tử ( EUI và HEUI ).
7.2.5.1. Hệ thống nhiên liệu Diesel EUI.
a). Khái quát.
Hình 7.2.21. Sơ đồ hệ thống nhiên liệu EUI
1: Thùng dầu 
 5: Các vòi phun
2: Bầu lọc thô
 6: ECM
3: Bơm chuyển nhiên liệu
 7: Các cảm biến
4: Bầu lọc tinh
Mặc dù được giới thiệu vào cuối những năm 80, nhưng hệ thống nhiên liệu EUI đã đạt được những thành tựu nhất định về mặt cấu tạo, nâng cao tính năng làm việc và độ tin cậy. EUI còn là tiền đề cho hệ thống nhiên liệu HEUI – Hydraulically Actuated Electronically Controlled Unit Injector (tác động thủy lực, điều khiển điện tử) sau này.
Hệ thống nhiên liệu EUI có 5 bộ phận cấu thành: 
- Các vòi phun EUI: Tạo ra áp suất phun từ 10.000 - 30.000 psi và ở tốc độ định mức nó phun tới 19 lần/s.
- Bơm chuyển nhiên liệu: Cung cấp nhiên liệu cho các vòi phun bằng cách hút nhiên liệu từ thùng chứa và tạo ra một áp suất từ 60-125 psi.
- Mô - đun điều khiển điện tử (ECM – Electronic Control Module): Là một máy vi tính công suất lớn điều khiển các hoạt động chính của động cơ.
- Các cảm biến: Là những thiết bị điện tử kiểm soát các thông số của các động cơ: Như nhiệt độ, áp suất,  và cung cấp các thông tin cho ECM bằng một điện thế tín hiệu.
- Các thiết bị tác động: Là những thiết bị điện tử sử dụng các cường độ dòng điện từ ECM để làm việc hoặc thay đổi hoạt động của động cơ. Ví dụ thiết bị tác động vòi phun là công tắc điện từ.
b). Hệ thống nhiên liệu áp suất thấp
Cung cấp nhiên liệu từ thùng đến các vòi phun. Hệ thống nhiên liệu này có ba chức năng chính: Cung cấp nhiên liệu đến vòi phun EUI để đốt cháy, cấp một lượng thích hợp làm mát vòi phun và cấp một lượng để xả khí trong hệ thống.
Các bộ phận cấu thành chính trong hệ thống nhiên liệu áp suất thấp: Thùng nhiên liệu, các đường dẫn nhiên liệu, bầu lọc thô nhiên liệu hoặc bộ tách nước, bơm tiếp nhiên liệu, bầu lọc tinh nhiên liệu và bơm tay và van bộ điều chỉnh áp suất. Giữa các loại động cơ và ứng dụng khác nhau thì từ thùng nhiên liệu đến bơm tiếp thì có sự khác nhau giữa thành phần cấu tạo ví dụ như: Đối với hầu hết các loại động cơ xe tải đường kính bầu lọc thô thường là 15 - 20 μm để loại bỏ cặn ở thùng nhiên liệu, tuy vậy có một số nhà sản suất xe tải chỉ sử dụng bầu lọc tinh chứ không dùng bầu lọc thô.
Nhiên liệu được hút từ thùng chảy đến bầu lọc thô liệu hoặc bộ tách nước ở đó bầu lọc thô sẽ loại bỏ cặn lớn trước khi nhiên liệu đi vào bơm tiếp nhiên liệu, đây là loại bơm bánh răng điển hình và có van giảm áp, áp suất nhiên liệu bị giới hạn từ 60-125 psi, lượng nhiên liệu thừa chảy từ van giảm áp bên ngoài qua các đường dẫn bên trong để vào bơm. Nhiên liệu chảy từ cổng ra của bơm đến bầu lọc tinh nhiên liệu, trước đây bầu lọc tinh nhiên liệu thường có dày là 10-15 μm, phần lớn các máy sử dụng động cơ sản xuất trước năm 1999 và động cơ mới thì có bầu lọc 2 μm bầu lọc 2 μm này có thể loại bỏ được những loại cặn rất nhỏ, cặn này làm mòn vòi phun. Bơm tay được lắp ở bệ bầu lọc nhiên liệu. Bơm tay có nhiện vụ làm đầy vào hệ thống và loại bỏ khí trong hệ thống nhiên liệu áp suất thấp sau khí nạp nhiên liệu hoặc thay thế vòi phun. Nhiên liệu từ thùng qua bơm tiếp đến bầu lọc và đẩy nhiên liệu vào đường dầu cấp vào nắp máy và quay trở về thùng. Nhiên liệu chảy từ bầu lọc tinh nhiên liệu đến đường đầu cấp ở nắp máy.
Trên động cơ 3406E đường cấp nhiên liệu là một lỗ khoan thông từ trước đến sau của nắp máy. Trên máy có động cơ C10C12 cụm ống dẫn ở bên sườn động cơ sẽ cấp nhiên liệu đến từng vòi phun và dòng nhiên liệu thừa sẽ quay trở về thùng, dòng nhiên liệu thừa chảy đến bộ điều chỉnh áp suất. Bộ điều chỉnh áp suất có van một chiều có gắn lò xo van giảm áp sẽ mở ở áp suất 60 psi và điều chỉnh áp suất trong khoảng 60-125 psi. Khi động cơ tắt và nhiên liệu không có, van nhiên liệu có gắn lò xo sẽ đóng để cắt nhiên liệu không chảy ngược về thùng. Một lượng nhiên liệu phải được giữ lại ở trong lắp máy để cấp cho vòi phun khi khởi động lại động cơ.
c). Hệ thống dẫn động phun
Trục cam có ba vấu cho mỗi xylanh, hai vấu dẫn động cho cam nạp và cam xả, còn vấu còn lại thì dẫn động bơm vòi phun. Lực được truyền từ vấu cam dẫn động vòi phun trên trục cam qua con đội đến đũa đẩy, thông qua cụm cò mổ tác động làm vòi phun đi xuống nén nhiên liệu tạo áp suất cao. Dầu có áp suất cao này được cấp đến vòi phun. Vòi phun tạo ra áp suất nhiên liệu. Lượng nhiên liệu thích hợp được phun vào xy lanh ở những thời điểm chính xác. Mô đun điều khiển ECM có nhiệm vụ xác định thời điểm và lượng nhiên liệu cần phun.
Hình 7.2.22. Sơ đồ hệ thống dẫn động phun của EUI
 1: Êcu điều chỉnh 4: Đũa đẩy
 2: Cụm cò mổ 5: Trục cam
 3: Vòi phun
d). Vòi phun
	Cấu tạo: Vòi phun EUI là một vòi phun cơ khí chính xác điều khiển bằng điện tử, có cấu tạo gồm 2 phần:
- Cơ cấu sinh áp suất cao: Cam à đĩa tì àđũa đẩy à cò mổ àcon đội à thanh đẩy à piston plunger à thân xy lanh à cụm vòi phun.
- Cơ cấu điều khiển phun.
Hình 7.2.23. Cấu tạo vòi phun
1: Cụm van điều khiển phun 4: Khoang xylanh
2: Chốt đẩy piston 5: Phân kim phun
3: Piston bơm
*). Hoạt động của vòi phun: Cụm van điều khiển phun được điều khiển bởi ECM kết hợp với cam được dẫn động bởi động cơ của vòi phun EUI.
 Nạp nhiên liệu Phun nhiên liệu Kết thúc phun
Hình 7.2.24. Các giai đoạn hoạt động của vòi phun
Hoạt động của vòi phun EUI gồm giai đoạn sau:
- Giai đoạn nạp nhiên liệu: ECM điều khiển mở cụm van điều khiển phun, đồng thời lúc này cam không tác động vào đũa đẩy, thanh đẩy plunger được lò xo đẩy lên, thể tích khoang than xy lanh tăng lên và dầu được hút vào xylanh.
- Giai đoạn phun: ECM điều khiển đóng cụm van điều khiển phun, đường dầu vào bị bịt kín trong thân xylanh, lúc này cam tác động vào đũa đẩy, thông qua đũa đẩy cò mổ nén thanh đẩy plunger xuống. Áp suất dầu trong xy lanh và khoang kim phun tăng lên thắng lực lò xo đẩy kim phun đi lên và nhiên liệu được phun ra.
- Giai đoạn kết thúc phun: ECM điều khiển mở cụm van điều khiển, dầu có áp suất cao trong thân xy lanh hồi về đường dầu trong nắp máy, kết thúc phun 
7.2.5.2. Hệ thống nhiên liệu Diesel HEUI.
a). Khái quát
Hình 7.2.25. Sơ đồ hệ thống nhiên liệu HEUI
1. Bơm áp cao
4. Các cảm biến
2. Van điều khiển áp suất
5. ECM
3. Cụm vòi phun
Hệ thống nhiên liệu HEUI (Hydraulically Actuated Electronically Controlled Unit Injector - Tác động thủy lực, điều khiển điện tử) là một trong những cải tiến lớn của động cơ Diesel. Nó cũng là một bộ phận trong công nghệ ACERT của hãng Carterpillar. Sự ra đời của HEUI đã thiết lập những tiêu chuẩn mới đối với động cơ về tiêu hao nhiên liệu, độ bền cũng như các tiêu chuẩn về khí thải.
Công nghệ phun nhiên liệu HEUI đang thay đổi cách nghĩ của cả nhà kỹ thuật lẫn người vận hành về hiệu suất của động cơ Diesel. Vượt trội hơn hẳn công nghệ phun nhiên liệu truyền thống trước đây, HEUI cho phép điều chỉnh chính xác nhiên liệu phun vào buồng cháy cả về thời gian, áp suất và lượng nhiên liệu phun mang lại hiệu suất cao cho động cơ.
Công nghệ phun nhiên liệu truyền thống trước đây phụ thuộc vào tốc độ động cơ, khi tốc độ động cơ tăng thì áp suất phun cũng tăng lên, gây ảnh hưởng đến độ bền của động cơ và làm tăng suất tiêu hao nhiên liệu của động cơ. Áp suất phun đối với hệ thống nhiên liệu HEUI không phụ thuộc vào tốc độ động cơ, mà được điều khiển bằng điện. Vì vậy, động cơ trang bị hệ thống HEUI sẽ tiết kiệm nhiên liệu hơn và khí xả sạch hơn. Như vậy ứng dụng hệ thống nhiên liệu HEUI vào động cơ cho phép nâng cao hiệu suất làm việc của động cơ, tiết kiệm nhiện liệu và giảm thiểu các tổn thất cũng như tiếng ồn của động cơ.
Tuy nhiên, các thiết bị trong hệ thống nhiêu liệu HEUI có độ chính xác rất cao, nhiên liệu bẩn có thể gây mòn, thậm chí phá hỏng các chi tiết trong hệ thống. Hạt bẩn có đường kính chỉ bằng 1/5 đường kính sợi tóc đã có thể gây nguy hiểm cho hệ thống. Chính vì vậy bộ lọc giữ một vai trò rất lớn trong việc nâng cao độ bền của hệ thống.
b). Vòi phun HEUI
*). Cấu tạo
Hình 7.2.26: Cấu tạo vòi phun HEUI
	1: Van điều khiển điện từ 4: Van kiểm tra
	2: Cụm piston tăng áp suất 5: Cụm kim phun
	3: Đường dầu vào 6: Van tác động phun
Vòi phun là một thiết bị độc lập được điều khiển trực tiếp bởi mô đun điều khiển điện tử ECM (2). Dầu có áp suất từ 800 đến 3000 psi được bơm cao áp (3) chuyển đến vòi phun. Bộ phận  piston lông-giơ trong vòi phun hoạt động tương tự như xylanh thuỷ lực có tác dụng nâng áp suất dầu vào vòi phun lên đến áp suất phun. Van điện từ ở phía trên vòi phun nhận tín hiệu điều khiển từ ECM, qua đó điều khiển dầu bôi trơn tác động tác động vào piston lông-giơ để điều khiển thời điểm và lượng nhiên liệu phun
Hình 7.2.27: Quá trình phun của vòi phun HEUI
*). Nguyên lý làm việc
	Bơm áp cao của hệ thống cấp một lượng dầu thủy lực tới van điện từ của vòi phun HEUI. Tại đây van điện từ sẽ được điều khiển mở cho dầu có áp suất cao này vào trong khoang phía dưới van hình nấm để tác động phun.
	Một bơm cấp nhiên liệu (bơm dầu Diesel) nằm trong bơm áp cao đồng thời cấp một lượng nhiên liệu có áp suất nhất định vào đường biên của cụm kim phun. Tại đây nhiên liệu có áp suất nhất định sẽ chờ sẵn ở khoang của cụm phun nằm phía dưới cần đẩy. Một phần nhiên liệu cũng được đưa xuống cụm piston tăng cường áp suất
	Khi van điện từ mở, dầu áp cao sẽ được đưa vào trong khoang của van hình nấm, tạo nên một áp suất đẩy cần đẩy đi xuống. Cần đẩy (Plunger) đi xuống sẽ đồng thời tạo ra một áp suất thắng được sức căng của lò xo trong cụm tăng cường áp suất, đẩy nhiên liệu chờ sẵn dưới khoang của cần đẩy ra ngoài buồng đốt của động cơ. Khi van điện từ đóng lại, dầu cao áp ngừng cấp vào khoang van hình nấm, áp suất trên khoang van bị mất, đồng thời áp suất khoang bên dưới cần đẩy cũng giảm đột ngột, áp suất khoang phía dưới cần đẩy ko đủ để thắng sức căng của lò xo cụm tăng áp nữa, ngắt quá trình phun nhiên liệu.
	Ở vòi phun HEUI thì quá trình phun có cả phun mồi (Pilot Injection).
c). Mô đun điều khiển điển tử (ECM)
	Hoạt động như một máy tính điều khiển toàn bộ động cơ. ECM nhận tín hiệu từ các cảm biến khác nhau, phân tích xử lý nhờ phần mềm đã cài đặt trong bộ nhớ của ECM và đưa tín hiệu điều khiển đến van điện từ của vòi phun (1) để điều khiển thời điểm, và lượng nhiên liệu phun. Đồng thời, ECM cũng gửi tín hiệu đến van điều khiển áp suất tác động phun (4) để điều khiển áp suất dầu chuyển đến vòi phun. Do áp suất này tỉ lệ với áp suất phun, nên qua đó ECM sẽ điều khiển được áp suất phun. Như vậy ECM sẽ điều khiển được toàn bộ quá trình phun nhiên liệu phù hợp với tín hiệu do các cảm biến gửi về.
d). Bơm cao áp
	Là bơm piston hướng trục thay đổi lưu lượng. Dầu từ thùng được hút qua các thiết bị như: Lọc dầu rồi vào bơm, hoạt động của bơm sẽ làm cho áp suất dầu tăng lên đến áp suất yêu cầu và bơm dầu đến vòi phun HEUI.
e). Van điều khiển áp suất tác động phun
Thông thường áp suất do bơm cao áp tạo ra sẽ cao hơn áp suất phun, van điều khiển áp suất tác động sẽ xả một phần dầu trở về thùng để ổn định áp suất dầu bằng áp suất yêu cầu do tín hiệu ECM qui định
Như vậy ứng dụng hệ thống nhiên liệu HEUI vào động cơ cho phép nâng cao hiệu suất làm việc của động cơ, tiết kiệm nhiên liệu và giảm thiểu các tổn thất cũng như tiếng ồn động cơ. Tuy nhiên các thiết bị trong hệ thống nhiên liệu HEUI có độ chính xác rất cao, nhiên liệu của động cơ, nhiên liệu bẩn có thể gây mòn, thậm chí phá hỏng các chi tiết trong hệ thống. Hạt bẩn có đường kính bằng 1/5 đường kính sợi tóc cũng có thể gây nguy hiểm cho hệ thống. Chính vì vậy bộ lọc giữ vai trò quan trọng trong việc nâng cao độ bền của hệ thống.

File đính kèm:

  • docgiao_trinh_cau_tao_dong_co_o_to.doc