Phân tích tập tin nhật ký sử dụng kỹ thuật khai phá và logic mờ

Cùng với lượng dữ liệu Website ngày càng tăng nhanh trên Internet,

trong những năm gần đây lĩnh vực nghiên cứu khai phá dữ liệu Website rất được

quan tâm. Trong bài báo này, chúng tôi nghiên cứu khái quát một số kỹ thuật khai

phá và logic mờ nhằm khai phá theo sử dụng Website dựa trên phân tích tập tin

nhật ký - ghi lại hoạt động của người dùng khi tương tác với Website. Trong quá

trình nghiên cứu cũng thực hiện kỹ thuật phân cụm mờ và kết hợp luật mờ nhằm

nâng cao hiệu quả kiểm tra tập dữ liệu nhật ký từ máy chủ Webserver.

pdf 14 trang kimcuc 8440
Bạn đang xem tài liệu "Phân tích tập tin nhật ký sử dụng kỹ thuật khai phá và logic mờ", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Phân tích tập tin nhật ký sử dụng kỹ thuật khai phá và logic mờ

Phân tích tập tin nhật ký sử dụng kỹ thuật khai phá và logic mờ
Nghiên cứu khoa học công nghệ 
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san An toàn Thông tin, 05 - 2017 91
PHÂN TÍCH TẬP TIN NHẬT KÝ SỬ DỤNG 
KỸ THUẬT KHAI PHÁ VÀ LOGIC MỜ 
Nguyễn Văn Quân1*, Hoàng Tuấn Hảo1, Vũ Văn Cảnh1, Hoàng Thế Triều2 
Tóm tắt: Cùng với lượng dữ liệu Website ngày càng tăng nhanh trên Internet, 
trong những năm gần đây lĩnh vực nghiên cứu khai phá dữ liệu Website rất được 
quan tâm. Trong bài báo này, chúng tôi nghiên cứu khái quát một số kỹ thuật khai 
phá và logic mờ nhằm khai phá theo sử dụng Website dựa trên phân tích tập tin 
nhật ký - ghi lại hoạt động của người dùng khi tương tác với Website. Trong quá 
trình nghiên cứu cũng thực hiện kỹ thuật phân cụm mờ và kết hợp luật mờ nhằm 
nâng cao hiệu quả kiểm tra tập dữ liệu nhật ký từ máy chủ Webserver. 
Từ khóa: Khai phá Web, Logic mờ, Tập tin nhật ký, Fuzzy. 
1. GIỚI THIỆU 
Trong những năm gần đây cùng với sự phát triển nhanh chóng của khoa học kỹ 
thuật là sự bùng nổ về tri thức. Kho dữ liệu, nguồn tri thức của nhân loại cũng trở 
nên đồ sộ, vấn đề khai thác các nguồn tri thức đó đặt ra thách thức lớn cho ngành 
công nghệ thông tin của thế giới. 
Cùng với sự tiến bộ vượt bậc của ngành công nghệ thông tin và sự phát triển 
mạnh mẽ của mạng thông tin toàn cầu, nguồn dữ liệu Web đã trở thành kho dữ liệu 
khổng lồ. Số lượng Website tăng mạnh, dữ liệu Website vô cùng lớn đòi hỏi phát 
triển nhiều kỹ thuật quản lý, lưu trữ và khám phá tri thức trên cơ sở dữ liệu lớn – 
Knowledge Discovery in Database (KDD). Giai đoạn chính của KDD là quá trình 
khai phá dữ liệu, thông qua kỹ thuật khám phá thì tri thức có thể được tìm thấy 
trong dữ liệu, và nó thường được lưu trữ trong cơ sở dữ liệu quan hệ theo một dạng 
cấu trúc [1]. Các lĩnh vực nghiên cứu khác cũng phát triển liên quan tới Web và 
khai thác thông tin tài liệu trong cơ quan và tổ chức. Công nghệ Web thay đổi, phát 
triển nhanh chóng và ngày càng được mở rộng không đơn thuần chỉ để tìm kiếm và 
truy vết thông tin mà còn để thiết lập các giao dịch thương mại. Sự cạnh tranh 
trong thương mại điện tử đưa ra yêu cầu tạo các ứng dụng thông minh để lưu trữ, 
khảo sát thông tin về các phiên sử dựng Web hoặc thông tin về khách hàng tiềm 
năng. Chính vì lý do này, hành vi và đối tượng người dùng là yếu tố cần thu thập 
và phân tích. Cơ sở dữ liệu tri thức về người dùng được sử dụng không chỉ để mô 
tả về người dùng mà còn để khám phá các khuynh hướng chung phục vụ cho mục 
đích thương mại và để cải thiện chất lượng của chính các Website. Dữ liệu tri thức 
về người dùng được thu thập, lựa chọn từ hành vi của người dùng trong quá trình 
truy cập Website thông qua các tập tin nhật ký. 
Công nghệ thông tin 
N. V. Quân, H. T. Hảo, , “Phân tích tập tin nhật ký kỹ thuật khai phá và logic mờ.” 92 
Mục tiêu khai phá tập tin nhật ký trong Webserver nhằm xác định mối quan hệ 
giữa người dùng và những khía cạnh khác có liên quan. Tính chất tự nhiên của 
dữ liệu tri thức trong các tập tin nhật ký và thông tin để dự đoán như thời gian, 
tuổi người dùng, trình độ văn hóathường được thực hiện bằng kỹ thuật logic 
mờ. Đây là một công cụ được sử dụng để mô hình hóa thông tin liên quan đến 
khai phá Web. 
Trong bài báo này, chúng tôi trình bày tóm tắt một số nghiên cứu sử dụng logic 
mờ trong khai phá dữ liệu Web. Với mục đích giải thích ba dạng khai phá dữ liệu 
Web: Khai phá nội dung Web, khai phá cấu trúc Web và khai phá theo sử dụng 
Web. Sau đó tập trung vào khai phá theo sử dụng Web bao gồm nghiên cứu các 
quá trình cá nhân hóa và xây dựng hồ sơ người dùng trên Web. Chúng tôi tóm lược 
các ứng dụng chính của logic mờ trong một số công trình nghiên cứu và mô tả một 
số thí nghiệm sử dụng logic mờ trong khai phá dữ liệu Web. 
2. KHAI PHÁ WEB 
Có nhiều khái niệm khác nhau về khai phá Web, nhưng có thể tổng quát hóa 
như sau [16]: Khai phá Web là việc sử dụng các kỹ thuật khai phá dữ liệu để tự 
động hóa quá trình khám phá và trích rút những thông tin hữu ích từ các tài liệu, 
các dịch vụ và cấu trúc Web. Nói cách khác khai phá Web là quá trình thăm dò 
những thông tin quan trọng, các mẫu tiềm năng từ nội dung Web, từ thông tin truy 
cập Web, từ liên kết trang và từ nguồn tài nguyên thương mại điện tử bằng các kỹ 
thuật khai phá dữ liệu, giúp con người trích rút các tri thức, cải tiến quá trình thiết 
kế Website và phát triển tốt hơn trong lĩnh vực thương mại điện tử. 
Những thách thức gặp phải trong quá trình thu thập thông tin cần thiết: Số 
lượng dữ liệu lớn, ngôn ngữ đa dạng, vấn đề chất lượng thông tin, sự phân bố dữ 
liệu trên các nền tảng khác nhau và cuối cùng rất quan trọng đó là sự thiếu cấu 
trúc trong dữ liệu Web. Từ những đặc điểm trên, đặc biệt, đối với dữ liệu phi cấu 
trúc và tính không đồng nhất cũng là những điểm khó khăn chính của quá trình 
khai phá Web. Trong những quá trình này, các kỹ thuật khai phá dữ liệu được sử 
dụng để khám phá tự động và trích chọn thông tin từ các tài liệu và các dịch vụ 
Web [12]. 
Cooley đưa ra ba hình thức khai phá Web: Xuất phát từ nội dung, cấu trúc và 
theo sử dụng [6]. 
Khai phá nội dung Web là khám phá tự động các mẫu từ nội dung văn bản 
Web [7][21]. Khai phá cấu trúc Web bao gồm nghiên cứu về cấu trúc liên kết đưa 
vào hoặc nội dung các văn bản bên trong để khám phá các mẫu hữu ích của cấu 
Nghiên cứu khoa học công nghệ 
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san An toàn Thông tin, 05 - 2017 93
trúc liên kết [7][9]. Cuối cùng là khai phá theo sử dụng Web, đây là nội dung chính 
chúng tôi sẽ đề cập trong nghiên cứu này. Chúng tôi có thể định nghĩa đây là tiến 
trình khám phá tự động mẫu truy cập hoặc sử dụng các dịch vụ Web, dựa trên hành 
vi người dùng khi tương tác với Web [10]. Chúng tôi sẽ tập trung thảo luận về khai 
phá theo sử dụng Web trong phần tiếp theo. 
Hình 1. Phân loại khai phá Web. 
2.1. Khai phá theo sử dụng Web 
Việc thu thập các thông tin về người dùng có ý nghĩa rất quan trọng đối với người 
thiết kế Website. Thông qua quá trình khai phá lịch sử các mẫu truy cập của người 
dùng Web, không chỉ thông tin về Web được sử dụng như thế nào mà còn nhiều 
đặc tính khác như các hành vi của người dùng có thể được xác định. Sự điều hướng 
đường dẫn người dùng Web mang lại giá trị thông tin về mức độ quan tâm của 
người dùng đối với Web. Dựa trên các tiêu chuẩn khác nhau thì người dùng Web 
có thể được phân cụm và các tri thức hữu ích có thể được lấy ra từ các mẫu truy 
cập Web. Nhiều ứng dụng có thể giúp lấy ra được các tri thức. Thông qua việc phát 
hiện mối quan hệ giữa những người dùng có cùng sở thích, sự quan tâm của người 
dùng Web ta có thể dự đoán chính xác hơn về người dùng đang cần gì, tại thời 
điểm hiện tại có thể dự đoán kế tiếp theo họ sẽ truy cập các thông tin gì. 
Khi người dùng tương tác với Website, họ để lại thông tin dấu vết dạng số (IP, 
agent, cookies...) được server tự động lưu trữ trong nhật ký truy cập. Các tập tin 
nhật ký chứa thông tin kết nối máy chủ hoặc định danh người dùng và xác thực. 
Những thông tin này thu thập hành vi người dùng trên mạng và phản ánh một số 
loại mô hình khác nhau về hành vi. 
Công nghệ thông tin 
N. V. Quân, H. T. Hảo, , “Phân tích tập tin nhật ký kỹ thuật khai phá và logic mờ.” 94 
Khai phá sử dụng Web là khai phá truy cập Web (Web log) để khám phá các 
mẫu người dùng truy cập vào Website. Qua quá trình phân tích và khảo sát các quy 
tắc trong việc ghi nhận lại quá trình truy cập Web ta có thể chứng thực khách hàng 
trong thương mại điện tử, nâng cao chất lượng dịch vụ thông tin trên Internet đến 
người dùng, nâng cao hiệu suất của các hệ thống phục vụ Web. Thêm nữa, phân 
tích quá trình đăng nhập Web của người dùng giúp cho việc xây dụng các dịch vụ 
Web theo yêu cầu đối với từng người dùng sẽ tốt hơn. Hiện nay, ta thường sử dụng 
các công cụ khám phá mẫu và phân tích mẫu. Nó phân tích các hành động người 
dùng, lọc dữ liệu và khai phá tri thức từ tập tin dữ liệu bằng cách sử dụng trí tuệ 
nhân tạo, khai phá dữ liệu, tâm lý học và lý thuyết thông tin. Kiến trúc tổng quát 
của quá trình khai phá theo sử dụng Web như sau: 
Hình 2. Kiến trúc tổng quát của quá trình khai phá theo sử dụng Web. 
2.2. Những vấn đề trong khai phá theo sử dụng Web 
Khai phá theo sử dụng Web có hai quá trình cần thực hiện: Thứ nhất là Web-
log cần được làm sạch, định nghĩa, tích hợp và biến đổi; Thứ hai là phân tích và 
khai phá. Có nhiều vấn đề khó khăn nảy sinh ở đây như cấu trúc vật lý của các 
Website khác nhau từ những mẫu người dùng truy xuất hoặc rất khó để có thể tìm 
ra những phiên người dùng, các phiên làm việc và các thao tác. 
Khả năng của Website để xử lý một tương tác với mức độ chi tiết và hướng dẫn 
khách hàng hoặc người dùng thông qua các thông tin hữu ích và cần thiết thành 
công, đang trở thành một trong những mục tiêu quan trọng cho mọi Website ngày 
nay. Một trong những giải pháp để đạt được mục tiêu này là thông qua sự cá nhân 
hóa của Website. 
Nghiên cứu khoa học công nghệ 
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san An toàn Thông tin, 05 - 2017 95
Sự cá nhân hóa Website có thể được nhìn nhận từ hai quan điểm: Phía công ty 
và phía người dùng. Quan điểm của công ty là mối quan hệ giữa tiếp thị và định 
danh lớp khách hàng. Quan điểm người dùng là mối quan hệ giữa sự khuyến nghị 
và thu thập thông tin. Quá trình này có thể mô tả như nhóm các hành vi được thực 
hiện bởi người dùng, những hành động này có thể được xử lý để cải thiện Website 
theo sở thích của người dùng [22]. Phần thông tin này có thể được lưu trong hồ sơ 
người dùng. Hồ sơ người dùng có thể được định nghĩa như biểu diễn tri thức về 
thông tin sở thích của người dùng [20], các tác giả đề xuất hai dạng hồ sơ khác 
nhau: Hồ sơ đơn thuần được biểu diễn bởi trích xuất dữ liệu từ tài liệu được cho là 
người dùng quan tâm; và các hồ sơ mở rộng có chứa các tri thức bổ sung về người 
dùng như tuổi, trình độ ngoại ngữ, quốc tích và một số thông tin bổ sung khác. 
Đối với việc thu thập những hồ sơ này thì sự phân cụm và các quy tắc kết hợp 
thường được áp dụng. Thông qua quá trình phân cụm, một nhóm khách hàng hoặc 
dữ liệu với các đặc tính tương tự được tự động khởi tạo thu thập mà không có sự 
phân loại trước đây. Hồ sơ người dùng bắt nguồn từ các nhóm này có thể được sử 
dụng để chỉ dẫn các chiến lược tiếp thị theo nhóm [23]. Các quy tắc kết hợp khám 
phá sự kết hợp và sự tương quan giữa các mặt hàng trong đó sự hiện diện của một 
mặt hàng hoặc một nhóm trong giao dịch ngụ ý rằng có sự có mặt của các mặt 
hàng khác [4]. Một ứng dụng trực tiếp nhất của quy tắc kết hợp để khai phá người 
dùng web xuất phát từ mối quan hệ giữa sự ghé thăm của người dùng với mô hình 
định hướng nhất định cho website. 
Sự bất tiện chính của các hồ sơ trong Website là thiếu tri thức về danh tính của 
người dùng. Hai tình huống khác nhau có thể gia tăng: Thứ nhất, người dùng chưa 
đăng ký trong đó hồ sơ người dùng có thể cung cấp bằng chứng về danh tính hoặc 
liên kết với một nhóm mạng xã hội. Một hồ sơ chung sau đó được ấn định cho 
người dùng. Sự tùy chọn lưu trữ trong hồ sơ có thể được áp dụng cho Website để 
người dùng đăng ký. 
Tình huống thứ hai người dùng đã đăng ký, nếu một người dùng được nhận 
diện theo phương pháp nào đó, Website có thể thay đổi tùy theo sở thích của người 
dùng. Hệ thống sẽ lưu trữ lại dấu vết của người dùng trong những lần ghé thăm 
trước với hồ sơ người dùng. Để mô tả đặc điểm nhóm người dùng với hành vi 
tương đồng, có thể thực hiện theo phương pháp phân cụm [20]. 
Các hành động được thực hiện bởi người dùng từ khi bắt đầu truy cập vào Web 
cho đến khi rời khỏi Web được ghi nhận và lưu trữ trong một tập tin nhật ký 
(logfile). Tập tin nhật ký sẽ chứa địa chỉ IP của máy khách, ngày, thời gian từ khi 
Công nghệ thông tin 
N. V. Quân, H. T. Hảo, , “Phân tích tập tin nhật ký kỹ thuật khai phá và logic mờ.” 96 
yêu cầu được tiếp nhận, các đối tượng yêu cầu và các thông tin trong phiên làm 
việc của người dùng, ví dụ: 
Hình 3. Minh họa nội dung tập tin nhật ký. 
2.3. Một số công trình trước đây 
Trong [22] đã khái quát quá trình cá nhân hóa dựa trên khai phá người dùng 
Website, các kỹ thuật khai phá dữ liệu như phân cụm để khám phá các nhóm người 
dùng được sử dụng. Hơn nữa, các quy tắc kết hợp có thể được sử dụng để tìm các 
mối quan hệ quan trọng giữa mục người dùng quan tâm dựa trên các mẫu thông tin 
chỉ dẫn. Một đề xuất khác về phương pháp thang phân cụm lấy ý tưởng từ hệ thống 
miễn dịch học tự nhiên cho phép học liên tục và tự đáp ứng với các mẫu mới [20]. 
WebMiner, một hệ thống nổi tiếng được phát triển cho sự cá nhân hóa dựa trên 
mô hình hành vi điều hướng của người dùng [6]. Bằng cách nhóm các Website 
tham khảo, hệ thống tạo ra các giao dịch từ các quy tắc kết hợp được khám phá. 
Một hệ thống liên quan khác để cá nhân hóa được biểu diễn trong [5], các tập tin 
nhật ký trên máy chủ được lưu trữ và phân tích. Từ các giao dịch, các mẫu hành vi 
được trích xuất để mô tả phương thức người dùng lướt web theo phương pháp 
phân cụm và các quy tắc kết hợp. Trong [24], các tác giả đề xuất một cấu trúc 
hướng dẫn cá nhân hóa và đáp ứng trong Website bởi hồ sơ người dùng và các truy 
cập được lựa chọn thông qua các tập tin nhật ký Website. 
Tiếp theo, chúng tôi dẫn giải một số đề xuất thực hiện trong lĩnh vực này được 
kết nối với logic mờ. 
3. KHAI PHÁ WEB VỚI LOGIC MỜ 
Cũng giống như trong khai phá dữ liệu truyền thống, xét từ góc độ dữ liệu hoặc 
kỹ thuật thì các công cụ tối ưu nhằm khai phá Web được xây dựng từ tính toán 
Nghiên cứu khoa học công nghệ 
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san An toàn Thông tin, 05 - 2017 97
mềm đã được nghiên cứu và áp dụng như logic mờ, giải thuật di truyền, mạng nơ 
ron nhân tạo hoặc tập thô [2][15]. Trong khai phá Web, logic mờ có thể trợ giúp 
việc biểu diễn người dùng lựa chọn theo định hướng dữ liệu, nâng cao sự linh hoạt 
của hệ thống và tạo ra các giải pháp rõ ràng hơn [21]. 
Gần đây, các kỹ thuật này được áp dụng vào nhiều lĩnh vực khai phá dữ liệu 
khác nhau như lựa chọn tài liệu [26] và khai phá Web. Trong khai phá Web, các kỹ 
thuật thường được sử dụng như phân cụm mờ và các luật kết hợp mờ. Các kỹ thuật 
này được sử dụng để tìm khuynh hướng chỉ dẫn chung của người dùng và xây 
dựng hồ sơ người dùng. 
Các thuật toán phân cụm mờ như FCM (Fuzzy C-Means), FCTM (Fuzzy-C 
Trimmed Medoids), và FCLMedS (Fuzzy-C Medians) được sử dụng để khai phá nội 
dung và người dùng website [21]. Một ứng dụng khác với phân cụm mờ được sử 
dụng để khai phá cấu trúc và người dùng website [23]. Các tác giả áp dụng thuật 
toán “tích tụ cạnh tranh trên các dữ liệu quan hệ” (CARD - Competitive 
Agglomeration of Relational Data) để nhóm các phiên người dùng khác nhau. Với 
mục đích này, không chỉ các mục trong tập tin nhật ký được xem xét mà tính toán sự 
giống nhau giữa hai phiên người dùng. Mục tiêu của ứng dụng này nhằm xác định 
phiên người dùng từ các truy cập người dùng vào các Website và cấu trúc của nó. 
Cùng với phân cụm mờ, một trong những kỹ thuật ngày càng được sử dụng 
trong khai phá Website là các luật kết hợp mờ. Một ứng dụng của kỹ thuật này 
được đề xuất trong [13], trong đó, sự sàng lọc các truy vấn từ một nhóm khởi tạo 
tài liệu dấu vết lấy từ Website được thực hiện. Các văn bản  ...  tích tập tin nhật ký kỹ thuật khai phá và logic mờ.” 98 
 giữa thành viên và tập hợp. Lý thuyết này liên quan đến tập mờ và lý thuyết xác suất. 
Trong quá trình khai phá sử dụng Web, đôi khi chúng ta không có thông tin 
chính xác của người dùng trong các tập tin nhật ký ngoài những thông tin nhận 
được từ server. Để nhận được các thông tin chính xác của người dùng, chúng ta có 
thể bổ sung thêm định danh của người dùng và xác thực thông qua nguồn dữ liệu 
khác hoặc có thể suy luận từ các thông tin trong quá trình khai phá. Ví dụ, chúng ta 
có thể suy luận từ trình độ văn hóa của người dùng dựa vào thói quen của người 
dùng hoặc từ các thông tin liên quan đến trình độ văn hóa. 
Vì vậy, khi hồ sơ người dùng mở rộng được xây dựng, có những thông tin liên 
quan đến các khái niệm khác nhau về người dùng. Một số khái niệm như độ tuổi 
của người dùng không chính xác, vì hệ thống phải ước lượng các dữ liệu nếu người 
dùng không tương xứng, hoặc kiên nhẫn chờ đợi người dùng khai báo trên 
Website. Các đặc điểm này có thể được mô hình hóa bằng các nhãn ngôn ngữ [20]. 
Chúng ta thấy các khía cạnh khác nhau cũng như các giải pháp được đề xuất 
trong lĩnh vực khai phá sử dụng web, chủ yếu dựa trên luật kết hợp và kỹ thuật 
phân cụm. Nghiên cứu của chúng tôi dựa trên các kỹ thuật này cùng với logic mờ 
sẽ thu được kết quả có ý nghĩa hơn. Vì thế, luật kết hợp mờ cho phép chúng tôi tìm 
ra các luật có liên quan đến hành vi người dùng. Trong phần tiếp theo chúng tôi sẽ 
giải thích về luật kết hợp mờ và thử nghiệm các kỹ thuật có liên quan. 
3.2. Luật kết hợp mờ 
Luật kết hợp được giới thiệu từ năm 1993, bài toán khai phá luật kết hợp nhận 
được rất nhiều quan tâm của nhiều nhà khoa học. Ngày nay, việc khai phá các luật 
như thế vẫn là một lĩnh vực quan trọng trong khai phá dữ liệu. Luật kết hợp giúp 
chúng ta tìm được các mối liên quan giữa các mục dữ liệu (items) của cơ sở dữ liệu 
(CSDL) [1]. Luật kết hợp là dạng khá đơn giản nhưng mang lại nhiều hiệu quả. 
Thông tin về các dạng luật này rất quan trọng và hỗ trợ không nhỏ trong quá trình 
ra quyết định. 
Các luật kết hợp mờ thường tìm kiếm các mối quan hệ hay sự tương đồng giữa 
các nhóm hạng mục hoặc các lĩnh vực trong một cơ sở dữ liệu quan hệ. Cho I là 
tập các phần tử được gọi là "Items" và cho T là tập các phần tử "giao dịch", mỗi 
giao dịch là một tập các Items. Hãy xem xét hai tập Items 
1 2,I I I , trong 
đó
1 2I I  . Một luật kết hợp 1 2I I chỉ sự xuất hiện của các tập phổ biến 1I 
trong giao dịch tạo sẽ ra sự xuất hiện của 
2I trong cùng một giao dịch, tuy nhiên, 
không nhất thiết cần phải có sự đối ứng [17]. 
1I và 2I được gọi là nguyên nhân và 
Nghiên cứu khoa học công nghệ 
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san An toàn Thông tin, 05 - 2017 99
kết quả của các luật tương ứng. Các biện pháp được dùng để mô tả mối quan hệ 
giữa nguyên nhân và kết quả của luật kết hợp là “độ hỗ trợ”, và “độ tin cậy”. Độ 
hỗ trợ là tỷ lệ với các giao dịch trong các luật và độ tin cậy đo lường độ chính xác 
của các luật hay là tỷ lệ của 
1I trong giao dịch có thể tạo ra 2I trong giao dịch đó. 
Một số tác giả đã đề xuất các luật kết hợp mờ để giải quyết các bài toán với dữ 
liệu mờ hoặc đã được mờ hóa [3][10][14][18][19], các luật kết hợp mờ có thể được 
trích xuất từ nhóm các giao dịch mờ sử dụng thuật toán APrioriTID [1]. 
Một giao dịch mờ có thể được định nghĩa là một tập con khác rỗng I  , với 
mỗi i I thì i là bậc thành viên i trong giao dịch mờ  [12]. 0I với 0I I 
là mức độ hòa nhập của Item trong một giao dịch mờ  , được định nghĩa trong 
công thức (1): 
 0 min
i I
I i 
  
 (1) 
Do đó, các giao dịch mờ điều khiển tính không minh bạch và tạo ra sự linh hoạt 
hơn, bởi vì chúng cho phép xử lý các giá trị trung gian trong khoảng [0,1] để biểu 
diễn bậc thành viên của Items trong giao dịch. 
Để đánh giá việc thực hiện các luật kết hợp, chúng tôi sử dụng theo cách tiếp 
cận ngữ nghĩa dựa trên việc đánh giá câu định lượng [25]. Một câu định lượng là 
một biểu thức có dạng "Q của F là G", trong đó, F và G hai tập con mờ của tập hữu 
hạn X, và Q là lượng hóa mờ tương đối. Định lượng tương đối là các nhãn ngôn 
ngữ có thể được biểu diễn bằng các giá trị mờ trong khoảng [0,1], chẳng hạn như 
các nhãn "hấu hết", "hầu như", hoặc "nhiều". Bằng phương pháp này, chúng tôi có 
thể xác định được ước lượng các luật. Do đó, độ tin cậy và độ hỗ trợ (tỷ lệ xuất 
hiện) đạt được phụ thuộc vào phương pháp đánh giá và sự lựa chọn lượng hóa. 
Chúng tôi đánh giá các câu định lượng theo phương pháp GD [8]. Phương pháp 
này đã được minh chứng đạt được hiệu suất cao hơn các phương pháp đề xuất 
khác. Công thức để đánh giá "Q của F là G" theo phương pháp GD được định 
nghĩa trong (2): 
1D
i
ii
Q i i
G
F
G FG
G Q
F F
   
(2) 
Yếu tố chắc chắn của một luật kết hợp mờ có giá trị trong khoảng [0,1] 
[8]; Cho một dẫn xuất luật A → C, khi đó yếu tố chắc chắn là tích cực chỉ khi sự 
phụ thuộc giữa A và C là tích cực, trường hợp giữa A và C độc lập nhau thì yếu tố 
Công nghệ thông tin 
N. V. Quân, H. T. Hảo, , “Phân tích tập tin nhật ký kỹ thuật khai phá và logic mờ.” 100 
chắc chắn là 0, trong trường hợp A và C là đối nghịch thì nó mang giá trị 
âm. Chúng tôi cho rằng một luật kết hợp mờ là mạnh khi yếu tố chắc chắn của nó 
và sự hỗ trợ lớn hơn hai giá trị ngưỡng do người dùng định nghĩa tương ứng là “độ 
tin cậy nhỏ nhất” (minCF) và “sự hỗ trợ/tỷ lệ xuất hiện bé nhất” (minSupp). 
3.3. Thử nghiệm và đánh giá 
Trong quá trình thử nghiệm, chúng tôi đã xem xét nhiều kỹ thuật liên quan đến 
khai phá sử dụng Web, khi tiến hành thực nghiệm chúng tôi áp dụng mô hình tìm 
kiếm thông tin qua các luật kết hợp mờ. Chúng tôi sử dụng dữ liệu để phân tích từ 
bộ dữ liệu tập tin nhật ký được đề xuất trong hội nghị ECML/PKDD năm 2005 
[11], các tập tin có định dạng CSV. Trong bảng 1 biểu diễn một dòng trong tập tin 
nhật ký, trong đó bao gồm 6 trường (ID Shop, Date, IP, Session, Visited page, 
Referenced page). 
Bảng 1. Biểu diễn thông tin một dòng trong tập tin nhật ký. 
ID Shop Date IP 
11 Tue Jan 20 
19:00:132004 
213.235.141.105 
Session Visited page Referenced Page 
1f75ccd2afbf87dc9abccde23f3 /dt/?c=11670  
Mỗi lần thực hiện phân tích một giao dịch, chúng tôi có thể quyết định được 
dạng thông tin có thể đạt được dựa trên các trường được chọn để tham gia vào các 
luật thực hiện huấn luyện. Nếu người dùng chọn trường ngày và trang truy cập, các 
tri thức trích xuất có thể cung cấp kết quả về những trang đã được truy cập nhiều 
trong một thời gian nhất định (giờ). Ngoài ra, nếu người sử dụng chọn các trường 
địa chỉ IP và các trang truy cập, chúng ta có thể xác định lượng người dùng đã truy 
cập vào trang có địa chỉ này. Để nhận được mọi thông tin từ tập tin nhật ký Web, 
chúng tôi sử dụng thuật toán AprioriTID [1] và các luật kết hợp để trích xuất nhằm 
giảm số nhóm cần được xem xét. Kết quả chúng tôi có thể nhận được để biết các 
Website mà người dùng truy cập bắt đầu từ một trang được truy cập ban đầu. 
Hình thức các quy tắc được sử dụng để trích xuất là: 
Trang khởi tạo ban đầu → Trang tham chiếu 
1. dt/?c=11670 →  
- Hỗ trợ (Support) = 0.6 
- Sự tin cậy (Confidence) = 1.0 
Nghiên cứu khoa học công nghệ 
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san An toàn Thông tin, 05 - 2017 101
- Yếu tố chắc chắn = 1.0 
2. dt/?c=12397 →  
- Hỗ trợ (Support) = 0.2 
- Sự tin cậy (Confidence) = 1.0 
- Yếu tố chắc chắn = 1.0 
Hai luật được trích xuất từ một tập nhỏ các giao dịch trong đó luật 1 xuất hiện 
với tỷ lệ 60% và luật 2 xuất hiện với tỷ lệ 20%. Trong cả hai trường hợp, độ tin cậy 
và yếu tố chắc chắn đều là 1, có nghĩa là khi người dùng truy cập các trang khởi 
tạo thì chắc chắn sẽ ghé thăm trang được tham chiếu. 
Sử dụng các phương pháp khai phá dữ liệu trong các lĩnh vực khác nhau như 
luật kết hợp, phân tích, thống kê, phân tích địa chỉ trang khởi tạo, phân lớp và phân 
cụm để khai phá ra các mẫu của người dùng. 
Hầu hết địa chỉ của các trang khởi tạo được bố trí theo đồ thị vật lý của trang 
Web. Mỗi nút là một trang, mỗi cạnh là một đường liên kết giữa các trang. Thông 
qua việc phân tích đường dẫn trong quá trình truy cập của người dùng có thể tìm ra 
được mối quan hệ trong việc truy cập của người dùng giữa các đường dẫn (trang 
web) liên quan. 
Ví dụ: Một công ty có địa chỉ Web  và các liên kết của nó: 
Quá trình phân tích logfile cho thấy: 
- 70% các khách hàng truy cập vào  đều xuất phát 
từ  thông qua  
 và  
- 80% khách hàng truy cập vào WebSite bắt đầu từ  
- 65% khách hàng rời khỏi site sau khi thăm 4 hoặc ít hơn 4 trang. 
Quá trình tích phân cụm dữ liệu cho thấy thông thường các khách hàng được 
nhóm theo các phần tử dữ liệu giống nhau hoặc có các đặc tính tương tự như nhau. 
Khi đó, nó trợ giúp cho việc phát triển và thực hiện các chiến lược tiếp thị khách 
hàng cả về trực tuyến và không trực tuyến cũng như việc trợ giúp trả lời tự động 
cho khách hàng thuộc cùng nhóm chắc chắn. Khi đó, hệ thống sẽ tạo ra sự thay đổi 
linh động hơn đối với mỗi Website riêng biệt cho từng khách hàng cụ thể. 
Công nghệ thông tin 
N. V. Quân, H. T. Hảo, , “Phân tích tập tin nhật ký kỹ thuật khai phá và logic mờ.” 102 
4. KẾT LUẬN 
Trong bài báo, chúng tôi đã xem xét các khía cạnh chính của khai phá Website 
tập trung vào khai phá sử dụng Website. Chúng tôi cũng chỉ ra ứng dụng logic mờ 
để phân tích thông tin của các tập tin nhật ký Webserver sử dụng luật kết hợp mờ. 
Một khía cạnh quan trọng khác trong bài báo là sự cá nhân hóa, trong đó các 
hành vi sử dụng được mô hình hóa bởi hồ sơ, trong đó hầu hết các phần tử này 
không chính xác. Trong tương lai, chúng tôi sẽ tiếp tục nghiên cứu phát hiện tấn 
công website thông qua phân tích tập tin nhật ký sử dụng kỹ thuật khai phá phân 
cụm mờ kết hợp các luật mờ. 
TÀI LIỆU THAM KHẢO 
 [1]. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets 
of items in large databases. In: Proceedings of the 1993, ACM SIGMOD 
Conference, pp.207–216 (1993) 
[2]. Arotaritei, D., Mitra, S.: Web Mining: a survey in the fuzzy framework. Fuzzy 
Sets and Systems (2000) 
[3]. Au, W.H., Chan, K.C.C.: An effective algorithm for discovering fuzzy rules in 
relational databases. In: Proc. Of IEEE International Conference on Fuzzy 
Systems, vol. II, pp. 1314–1319 (1998) 
[4]. Carbonell, J., Carven, M., Fienberg, S., Mitchell, T., Yang, Y.:Report on the 
conald workshop on learning from text and the web. In: CONALDWorkshop 
on Learning from Text and The Web (June 1998) 
[5]. Cernuzzi, L., Molas, M.L.: Integrando diferentes Técnicas de Data Mining en 
procesos de Web Usage Mining (2003) 
[6]. Cooley, R., Mobasher, B., Srivastava, J.: Web mining: Grouping Web Page 
References into Transactions for Mining World Wide Web Browsing 
Patterns, pp. 1–11 (2000) 
[7]. Chakrabati, S.: Data Mining for hypertext: A tutorial survey. ACM SIGKDD 
Explorations 1(2), 1–11 (2000) 
[8]. Delgado, M., Sánchez, D., Vila, M.A.: Fuzzy cardinality based evaluation of 
quantified sentences. Int. J. Aprox.Reasoning 3, 23 (2000) 
[9]. Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.A.: Mining Text 
Data: Special Features and Patterns. Pattern Detection and Discovery. In: 
Hand, D.J., Adams, N., Bolton, R. (eds.) Proceedings ESF Exploratory 
Nghiên cứu khoa học công nghệ 
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san An toàn Thông tin, 05 - 2017 103
Workshop. Lecture Notes in Artificial Intelligence Series, pp. 140–153 
(2002) 
[10]. Delgado, M., Marín, N., Sánchez, D., Vila, M.A.: Fuzzy Association Rules: 
General Model and Applications. IEEE Transactions on Fuzzy Systems 11, 
214–225 (2003) 
[11]. ECML/PKDD Conference 2005, Web Site. Porto, Portugal (2005) 
[12]. Etzioni, O.: The World Wide Web: Quagmire or gold mine. Comunications of 
the ACM 39, 65–68 (1996) 
[13]. Garofalakis, M.N., Rastogi, R., Seshadri, S., Shim, K.: Data Mining and the 
web: Past, present nad future. In: WorkShop on Web information and data 
managament, pp.43–47 (1999) 
[14]. Hong, T.P., Kuo, C.S., Chi, S.C.: Mining association rules from quantitative 
data. Intelligent Data Analysis 3, 363–376 (1999) 
[15]. Hǖllermeier, E.: Fuzzy methods in machine learning and data mining: Status 
and prospects. Fuzzy Sets and Systems 156(3), 387–406 (2005) 
[16]. Bing Liu, Web mining, Springer, 2007. 
[17]. Kraft, D.H., Martín-Bautista, M.J., Chen, J., Vila, M.A: Rules and fuzzy rules 
in text: concept, extraction and usage. International Journal of Approximate 
Reasoning 34, 145–161 (2003) 
[18]. Kuok, C.-M., Fu, A., Wong, M.H.: Mining fuzzy association rules in 
databases. SIGMOD Record 27(1), 41–46 (1998) 
[19]. Lee, J.H., Kwang, H.L.: An extension of association rules using fuzzy sets. In: 
Proc. of IFSA’97, Prague, Czech Republic (1997) 
[20]. Martín-Bautista, M.J., Kraft, D.H., Vila, M.A., Chen, J., Cruz, J.: User 
profiles and fuzzy logic for Web retrieval issues. Soft Computing Journal 
6(5), 365–372 (2004) 
[21]. Mitra, S., Pal, S.K:Data Mining in Soft Computing Framework: A Survey. 
IEEE Transactions on Neural Networks, 3–14 (2002) 
[22]. Mobasher, B.: Web Usage Mining and Personalization. In: Singh, M.P. (ed.) 
Practical Handbook of Internet Computing, CRC Press, Boca Raton (2005) 
[23]. Nasraoui, O., Frigui, H., Joshi, A., Krishnappuram, R.: Mining Web accses 
logs using relational competitive fuzzy clustering. In: Proceedings of springs 
Symposium On Natural Language Proccesing Form the www, Stanford, 
California. March 1997 (1997) 
Công nghệ thông tin 
N. V. Quân, H. T. Hảo, , “Phân tích tập tin nhật ký kỹ thuật khai phá và logic mờ.” 104 
[24]. Wong, C.: Shiu, S. and Pal, S.: Mining Fuzzy Association Rules for Web 
Access Case Adaptation. In: Workshop Proceedings of Soft Computing in 
Case-Based Reasoning Workshop, in conjunction with the 4th International 
Conference in Case-Based Reasoning, Vancouver, Canada, pp. 220 (2001) 
[25]. Zadeh, L.: The concept of linguistic variable and its application to 
approximate reasoning In Information Sciences 8, 199–251 (1975) 
[26]. Justicia et al., 2004. Justicia, C., Martín-Bautista, M. J., Sánchez, D.: Minería 
de textos: Aplicaciones con lógica difusa. Actas del Congreso Espãnol de 
Tecnologías con Lógica Difusa, Jaén (In Spanish) (2004). 
ABSTRACT 
LOGFILE ANALYSIS USING FUZZY LOGIC AND MINING TECHNIQUE 
In recent years, with the amounts of website data increasing rapidly on the 
Internet, the field of website data mining research is very interested. In this 
paper, we investigate some technical overview of the fuzzy logic and mining 
techniques used to exploit the website based on analysis of log files – record of 
user activity while interacting with the Website. In the research, fuzzy 
clustering techniques and combinations fuzzy clustering rule to improve the 
efficiency of verifying log dataset from webserver are also performed. 
Keywords: Web mining, Fuzzy Logic, File log, Fuzzy. 
Nhận bài ngày 06 tháng 12 năm 2016 
Hoàn thiện ngày 19 tháng 01 năm 2017 
Chấp nhận đăng ngày 01 tháng 5 năm 2017 
Địa chỉ: 1 Học viện Kỹ thuật quân sự ; 
 2 Phòng Thí nghiệm trọng điểm ATTT- Cục CNTT. 
 * Email: nguyenvanquan87@mail.ru 

File đính kèm:

  • pdfphan_tich_tap_tin_nhat_ky_su_dung_ky_thuat_khai_pha_va_logic.pdf