Giáo trình Hệ thống tủ sách máy tính
Cấu trúc luận lý
Máy tính số (Digital computer) là máy giải quyết các vấn đề bằng cách thực hiện
các chỉ thị do con người cung cấp. Chuỗi các chỉ thị này gọi là chương trình (program).
Các mạch điện tử trong một máy tính số sẽ thực hiện một số giới hạn các chỉ thị đơn giản
cho trước. Tập hợp các chỉ thị này gọi là tập lệnh của máy tính. Tất cả các chương trình
muốn thực thi đều phải được biến đổi sang tập lệnh trước khi được thi hành. Các lệnh cơ
bản là:
- Cộng 2 số.
- So sánh với 0.
- Di chuyển dữ liệu.
Tập lệnh của máy tính tạo thành một ngôn ngữ giúp con người có thể tác động lên
máy tính, ngôn ngữ này gọi là ngôn ngữ máy (machine language). Tuy nhiên, hầu hết các
ngôn ngữ máy đều đơn giản nên để thực hiện một yêu cầu nào đó, người thiết kế phải
thực hiện một công việc phức tạp. Đó là chuyển các yêu cầu này thành các chỉ thị có chứa
trong tập lệnh của máy. Vấn đề này có thể giải quyết bằng cách thiết kế một tập lệnh mới
thích hợp cho con người hơn tập lệnh đã cài đặt sẵn trong máy (built-in). Ngôn ngữ máy
sẽ được gọi là ngôn ngữ cấp 1 (L1) và ngôn ngữ vừa được hình thành gọi là ngôn ngữ cấp
2 (L2).
Tuy nhiên, trong thực tế, để có thể thực hiện được, các ngôn ngữ L1 và L2 không
được khác nhau nhiều. Như vậy, ngôn ngữ L2 cũng không thật sự giúp ích nhiều cho
người thiết kế. Do đó, một tập lệnh kế tiếp được hình thành sẽ hướng về con người nhiều
hơn là máy tính, tập lệnh này sẽ tạo thành một ngôn ngữ và ta gọi là ngôn ngữ L3. Ta có
thể viết các chương trình trong L3 như là đã tồn tại máy tính sử dụng ngôn ngữ L3 (máy
ảo L3). Các chương trình này sẽ được dịch sang ngôn ngữ L2 và được thực thi bằng một
chương trình dịch L2.
Tóm tắt nội dung tài liệu: Giáo trình Hệ thống tủ sách máy tính
Giáo trình he thong download form www.geosoftvn.com Tu sach MÁY TÍNH Tài liệu Lập trình hệ thống Chương 1 Phạm Hùng Kim Khánh Trang 1 Chương 1 KIẾN TRÚC VÀ HOẠT ĐỘNG CỦA HỆ VI XỬ LÝ / MÁY TÍNH 1. Cấu trúc luận lý Máy tính số (Digital computer) là máy giải quyết các vấn đề bằng cách thực hiện các chỉ thị do con người cung cấp. Chuỗi các chỉ thị này gọi là chương trình (program). Các mạch điện tử trong một máy tính số sẽ thực hiện một số giới hạn các chỉ thị đơn giản cho trước. Tập hợp các chỉ thị này gọi là tập lệnh của máy tính. Tất cả các chương trình muốn thực thi đều phải được biến đổi sang tập lệnh trước khi được thi hành. Các lệnh cơ bản là: - Cộng 2 số. - So sánh với 0. - Di chuyển dữ liệu. Tập lệnh của máy tính tạo thành một ngôn ngữ giúp con người có thể tác động lên máy tính, ngôn ngữ này gọi là ngôn ngữ máy (machine language). Tuy nhiên, hầu hết các ngôn ngữ máy đều đơn giản nên để thực hiện một yêu cầu nào đó, người thiết kế phải thực hiện một công việc phức tạp. Đó là chuyển các yêu cầu này thành các chỉ thị có chứa trong tập lệnh của máy. Vấn đề này có thể giải quyết bằng cách thiết kế một tập lệnh mới thích hợp cho con người hơn tập lệnh đã cài đặt sẵn trong máy (built-in). Ngôn ngữ máy sẽ được gọi là ngôn ngữ cấp 1 (L1) và ngôn ngữ vừa được hình thành gọi là ngôn ngữ cấp 2 (L2). Tuy nhiên, trong thực tế, để có thể thực hiện được, các ngôn ngữ L1 và L2 không được khác nhau nhiều. Như vậy, ngôn ngữ L2 cũng không thật sự giúp ích nhiều cho người thiết kế. Do đó, một tập lệnh kế tiếp được hình thành sẽ hướng về con người nhiều hơn là máy tính, tập lệnh này sẽ tạo thành một ngôn ngữ và ta gọi là ngôn ngữ L3. Ta có thể viết các chương trình trong L3 như là đã tồn tại máy tính sử dụng ngôn ngữ L3 (máy ảo L3). Các chương trình này sẽ được dịch sang ngôn ngữ L2 và được thực thi bằng một chương trình dịch L2. Việc xây dựng toàn bộ chuỗi các ngôn ngữ, mỗi ngôn ngữ được tạo ra sẽ thích hợp hơn ngôn ngữ trước đó sẽ có thể tiếp tục cho đến khi nhận được ngôn ngữ thích hợp nhất. Sơ đồ một máy ảo n cấp có thể biểu diễn như sau: Tài liệu Lập trình hệ thống Chương 1 Phạm Hùng Kim Khánh Trang 2 Một máy tính số có n cấp có thể xem như có n-1 máy ảo khác nhau, mỗi máy ảo có một ngôn ngữ máy riêng. Các chương trình viết trên các máy ảo này không thể thực thi trực tiếp mà phải dịch thành các ngôn ngữ máy cấp thấp hơn. Chỉ có máy thật dùng ngôn ngữ máy L1 mới có thể thực thi trực tiếp bằng các mạch điện tử. Một lập trình viên sử dụng máy ảo cấp n không cần biết tất cả các trình dịch này. Chương trình trong máy ảo cấp n sẽ được thực thi bằng cách dịch thành ngôn ngữ máy cấp thấp hơn và ngôn ngữ máy này sẽ được dịch thành ngôn ngữ máy thấp hơn nữa hay dịch trực tiếp thành ngôn ngữ máy L1 và thực thi trực tiếp trên các mạch điện tử. Cấp n Cấp 3 Cấp 2 Cấp 1 Máy ảo Mn dùng ngôn ngữ máy Ln Chương trình trong Ln được dịch thành ngôn ngữ của máy cấp thấp hơn Máy ảo M3 dùng ngôn ngữ máy L3 Chương trình trong L3 được dịch thành ngôn ngữ L2 hay L1 Máy ảo M2 dùng ngôn ngữ máy L2 Chương trình trong L2 được dịch thành ngôn ngữ máy L1 Máy tính số M1 dùng ngôn ngữ máy L1 Chương trình trong L1 được thực thi trực tiếp bằng các mạch điện tử Hình 1.1. Máy ảo n cấp Tài liệu Lập trình hệ thống Chương 1 Phạm Hùng Kim Khánh Trang 3 Về cơ bản, máy tính gồm có 6 cấp: Cấp 0 chính là phần cứng của máy tính. Các mạch điện tử của cấp này sẽ thực thi các chương trình ngôn ngữ máy của cấp 1. Trong cấp logic số, đối tượng quan tâm là các cổng logic. Các cổng này được xây dựng từ một nhóm các transistor. Cấp 1 là cấp ngôn ngữ máy thật sự. Cấp này có một chương trình gọi là vi chương trình (microprogram), vi chương trình có nhiệm vụ thông dịch các chỉ thị của cấp 2. Hầu hết các lệnh trong cấp này là di chuyển dữ liệu từ phần này đến phần khác của máy hay thực hiện việc một số kiểm tra đơn giản. Mỗi máy cấp 1 có một hay nhiều vi chương trình chạy trên chúng. Mỗi vi chương trình xác định một ngôn ngữ cấp 2. Các máy cấp 2 đều có nhiều điểm chung ngay cả các máy cấp 2 của các hãng sản xuất khác nhau. Các lệnh trên máy cấp 2 được thực thi bằng cách thông dịch bởi vi chương trình mà không phải thực thi trực tiếp bằng phần cứng. Cấp thứ 3 thường là cấp hỗn hợp. Hầu hết các lệnh trong ngôn ngữ của cấp máy này cũng có trong ngôn ngữ cấp 2 và đổng thời có thêm một tập lệnh mới, một tổ chức bộ Cấp 5 Cấp ngôn ngữ hướng vấn đề Dịch (chương trình dịch) Cấp 4 Cấp ngôn ngữ hợp dịch Dịch (hợp dịch) Cấp 3 Cấp hệ điều hành Dịch 1 phần (hệ điều hành) Cấp 2 Cấp máy quy ước Thông dịch (vi chương trình) Cấp 1 Cấp vi lập trình Vi chương trình (phần cứng) Cấp 0 Cấp logic số Hình 1.2 – Các cấp trên máy tính số Tài liệu Lập trình hệ thống Chương 1 Phạm Hùng Kim Khánh Trang 4 nhớ khác và khả năng chạy 2 hay nhiều chương trình song song. Các lệnh mới thêm vào sẽ được thực thi bằng một trình thông dịch chạy trên cấp 2, gọi là hệ điều hành. Nhiều lệnh cấp 3 được thực thi trực tiếp do vi chương trình và một số lệnh khác được thông dịch bằng hệ điều hành (do đó, cấp này là cấp hỗn hợp). Cấp 4 thật sự là dạng tượng trưng cho một trong các ngôn ngữ. Cấp này cung cấp một phương pháp viết chương trình cho các cấp 1, 2, 3 dễ dàng hơn. Các chương trình viết bằng hợp ngữ được dịch sang các ngôn ngữ của cấp 1, 2, 3 và sau đó được thông dịch bằng các máy ảo hay thực tương ứng. Cấp 5 bao gồm các ngôn ngữ được thiết kế cho người lập trình nhằm giải quyết một vấn đề cụ thể. Các ngôn ngữ này được gọi là cấp cao. Một số ngôn ngữ cấp cao như Basic, C, Cobol, Fortran, Lisp, Prolog, Pascal và các ngôn ngữ lập trình hướng đối tượng như C++, J++, Các chương trình viết bằng các ngôn ngữ này thường được dịch sang cấp 3 hay 4 bằng các trình biên dịch (compiler). 2. Giao tiếp ngoại vi Ta phân biệt tất cả 3 phương pháp xuất / nhập dữ liệu: - Nhập / xuất bằng cách hỏi trạng thái của thiết bị ngoại vi (polling) - Nhập / xuất bằng ngắt (interrupt). - Nhập / xuất bằng cách truy xuất trực tiếp vào bộ nhớ dùng các phần cứng phụ trợ (DMA). 2.1. Nhập / xuất dữ liệu bằng cách hỏi vòng (polling) Ta biết rằng vấn đề điều khiển nhập / xuất dữ liệu sẽ rất đơn giản trong trường hợp thiết bị ngoại vi lúc nào cũng có thể làm việc với μP. Ta có thể ví dụ như bộ hiển thị Led 7 đoạn lúc nào cũng sẵn sàng hiển thị dữ liệu khi mà μP gởi dữ liệu ra. Tuy nhiên, trong thực tế, không phải lúc nào μP cũng làm việc với các thiết bị ngoại vi có tính năng như trên. Ví dụ như khi làm việc với một máy in, μP yêu cầu in nhưng máy in không sẵn sàng (giả sử như hết giấy, kẹt giấy, ). Khi đó, μP phải kiểm tra xem một thiết bị mà nó cần giao tiếp có sẵn sàng hay không nếu thiết bị sẵn sàng thì mới thực hiện trao đổi dữ liệu. Để kiểm tra các thiết bị ngoại vi, μP phải sử dụng các tín hiệu bắt tay (handshake) xác định tuần tự từng thiết bị, xem thiết bị nào có yêu cầu trao đổi dữ liệu. Các tín hiệu này lấy từ các mạch giao tiếp do người thiết kế tạo ra. Giả sử hệ thống có 2 thiết bị ngoại vi, nếu thiết bị 1 có dữ liệu cần truyền đến μP thì nó sẽ gởi 1 xung để chốt dữ liệu đồng thời tạo tín hiệu sẵn sàng cho thiết bị. Khi μP kiểm tra tín hiệu sẵn sàng của thiết bị 1 thì nó sẽ đọc dữ liệu vào từ mạch chốt và xoá tín hiệu sẵn sàng. Trong trường hợp μP muốn gởi dữ liệu ra thiết bị 2, nó sẽ đọc tín hiệu sẵn sàng của thiết bị 2, nếu thiết bị 2 có thể nhận dữ liệu thì μP sẽ gởi dữ liệu ra mạch chốt và thiết bị 2 sẽ đọc dữ liệu vào. Tài liệu Lập trình hệ thống Chương 1 Phạm Hùng Kim Khánh Trang 5 2.2. Ngắt và xử lý ngắt Trong cách thức thực hiện trao đổi dữ liệu bằng cách hỏi vòng như trên, trước khi tiến hành thực hiện thì μP phải kiểm tra trạng thái sẵn sàng của thiết bị ngoại vi. Tuy nhiên trong thực tế ta cần phải tận dụng khả năng của μP để làm các công việc khác mà không phải tốn thời gian kiểm tra thiết bị, chỉ khi nào có yêu cầu trao đổi dữ liệu thì mới tạm dừng công việc hiện tại. Cách làm việc như vậy gọi là ngắt μP, khi có một ngắt xảy ra thì ta phải thực hiện gọi các chương trình phục vụ ngắt tại các địa chỉ xác định của μP. Các tín hiệu ngắt từ thiết bị ngoại vi đưa vào μP thông qua các chân NMI hay INTR. 2.2.1. Các loại ngắt Ngắt cứng: là các yêu cầu ngắt từ các chân NMI hay INTR. Ngắt cứng NMI là ngắt không che được còn ngắt cứng INTR có thể che được. Các lệnh CLI (Clear Interrupt) và STI (Set Interrupt) chỉ ảnh hưởng đến việc μP có chấp nhận yêu cầu ngắt tại chân INTR hay không. Yêu cầu ngắt tại chân INTR có thể có các kiểu ngắt từ 00h ÷ FFh. Kiểu ngắt này sẽ được đưa vào bus dữ liệu để μP xác định kiểu ngắt (dùng cho các thiết bị ngoại vi khác nhau). Ngắt mềm: là các ngắt thực hiện bằng phần mềm tác động do người sử dụng. 2.2.2. Đáp ứng của μP khi có yêu cầu ngắt Khi có yêu cầu ngắt đến μP và nếu được phép ngắt, μP sẽ thực hiện các công việc sau: - [SP] ← SP – 2, [SP] ← FR (Flag Register): cất thanh ghi cờ vào stack. - IF ← 0, TF ← 0: không cho thực hiện các ngắt khác. - SP ← SP – 2, [SP] ← CS: cất địa chỉ đoạn mã vào stack. - SP ← SP – 2, [SP] ← IP: cất địa chỉ trở về sau khi phục vụ ngắt 74LS245 2 3 4 5 6 7 8 9 19 1 18 17 16 15 14 13 12 11 A1 A2 A3 A4 A5 A6 A7 A8 G DIR B1 B2 B3 B4 B5 B6 B7 B8 INT2 INT1 INT7 INT5 VCC INT6 INT4 INT0 1 2 3 4 5 6 11 12 8 INT3 8086 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 GND AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 NMI INTR CLK GND RESET READY TEST INTA (QS1) ALE (QS0) DEN (S0) DT/R (S1) IO/M (S2) WR (LOCK) HLDA (RQ/GT1) HOLD (RQ/GT0) RD MN/MX BHE/S7 A19/S6 A18/S5 A17/S4 A16/S3 AD15 VCC Hình 1.3 – Kết nối ngắt đơn giản Tài liệu Lập trình hệ thống Chương 1 Phạm Hùng Kim Khánh Trang 6 - IP ← [Số_hiệu_ngắt*4], CS ← [Số_hiệu_ngắt*4 + 2]: lấy lệnh tại địa chỉ phục vụ ngắt tương ứng - Sau khi kết thúc chương trình con phục vụ ngắt (khi gặp lệnh IRET): + IP ← [SP], SP ← SP + 2 + CS ← [SP], SP ← SP + 2: lấy lại địa chỉ trước khi gọi chương trình phục vụ ngắt + FR ← [SP], SP ← SP + 2: lấy lại giá trị thanh ghi cờ 2.2.3. Xử lý ưu tiên ngắt Như ta đã biết ở trên, khi μP đang thực hiện lệnh, nếu có ngắt xảy ra thì μP sẽ tạm ngừng chương trình và thực thi chương trình con phục vụ ngắt. Trong thực tế sẽ có trường hợp có nhiều yêu cầu ngắt khác nhau cùng một lúc, khi đó μP sẽ phục vụ cho ngắt theo thứ tự ưu tiên với nguyên tắc là ngắt nào có mức ưu tiên cao nhất thì sẽ phục vụ cho ngắt đó trước. Các mức ưu tiên của các ngắt (từ mức thấp nhất đến mức cao nhất): - Ngắt thực hiện chạy từng lệnh (INT 1) - Ngắt che được INTR - Ngắt không che được NMI - Ngắt nội bộ (INT 0: xảy ra do phép chia số 0, ngắt mềm) 2.3. Nhập / xuất dữ liệu bằng DMA (Direct Memory Access) Trong các phương thức trao đổi dữ liệu như hai phần trên đã trình bày thì việc trao đổi dữ liệu giữa thiết bị ngoại vi và hệ thống thường theo trình tự sau: từ ngoại vi đến vi xử lý rồi đi vào bộ nhớ hay từ bộ nhớ đến vi xử lý rồi ghi ra ngoại vi. Trong thực tế sẽ có trường hợp ta cần thực hiện trao đổi dữ liệu ngay giữa ngoại vi và bộ nhớ. Khi đó người ta đưa ra cơ chế truy xuất bộ nhớ trực tiếp (DMA). Để thực hiện được vấn đề này, các hệ vi xử lý thông thường dùng thêm các mạch chuyên dụng để điều khiển quá trình truy xuất bộ nhớ trực tiếp (DMAC – Direct Memory Access Controller). Có tất cả 3 cơ chế hoạt động: ¾ Tận dụng thời gian CPU không dùng bus: Ta phải dùng thêm mạch phát hiện các chu kỳ xử lý nội của CPU và tận dụng các chu kỳ này để thực hiện trao đổi dữ liệu. ¾ Treo CPU để trao đổi từng byte: CPU không bị treo trong khoảng thời gian dài mà chỉ bị treo trong thời gian ngắn đủ để trao đổi 1 byte dữ liệu giữa bộ nhớ và ngoại vi. Do đó, công việc của CPU không bị gián đoạn mà chỉ bị chậm đi. ¾ Treo CPU một khoảng thời gian để trao đổi một khối dữ liệu: Trong cơ chế này, CPU bị treo trong suốt quá trình trao đổi dữ liệu. - CPU ghi từ lệnh và từ chế độ làm việc vào DMAC. - Khi thiết bị ngoại vi có yêu cầu trao đổi dữ liệu, nó gởi tín hiệu DRQ = 1 (DMA Request) đến DMAC. Tài liệu Lập trình hệ thống Chương 1 Phạm Hùng Kim Khánh Trang 7 - DMAC gởi tín hiệu HRQ (Hold Request) đến chân HOLD của CPU để yêu cầu treo CPU. Tín hiệu này sẽ giữ ở mức cao cho đến hết quá trình trao đổi dữ liệu. - Sau khi nhận yêu cầu treo, CPU sẽ thực hiện hết chu kỳ bus của m?nh rồi treo các bus và gởi tín hiệu HLDA (Hold Acknowledge) để báo cho DMAC biết có thể sử dụng các bus. - DMAC chuyển dữ liệu từ bộ nhớ đến ngoại vi bằng cách: đưa địa chỉ byte đầu tiên ra bus địa chỉ và đưa tín hiệu MEMR để đọc 1 byte từ bộ nhớ, kế tiếp DMAC đưa tín hiệu IOW để ghi dữ liệu ra ngoại vi. Sau đó, DMAC giảm số byte cần truyền, cập nhật địa chỉ bộ nhớ và lặp lại quá trình cho đến khi hết byte cần truyền. Hình 1.4 – Giao tiếp DMAC với hệ vi xử lý Hai tín hiệu dùng để yêu cầu treo và chấp nhận yêu cầu treo CPU dùng cho cơ chế DMA là HOLD và HLDA có thể mô tả như sau: Hình 1.5 – Tín hiệu HOLD và HLDA μP DMAC HRQ HACK HOLD HLDA I/O DRQ DACK DRQ DACK Memory Address bus Data bus Control bus CLK HOLD HLDA T4 hay T1 Tài liệu Lập trình hệ thống Chương 1 Phạm Hùng Kim Khánh Trang 8 3. Bus Hình 1.6 - Các bus trong một hệ thống máy tính Bus là đường truyền tín hiệu điện nối các thiết bị khác nhau trong một hệ thống máy tính. Bus thường có từ 50 đến 100 dây dẫn được gắn trên mainboard, trên các dây này có các đầu nối đưa ra, các đầu này được sắp xếp và cách nhau những khoảng quy định để có thể cắm vào đó những I/O board hay board bộ nhớ (bus hệ thống – system bus). Cũng có những bus dùng cho mục đích chuyên biệt, thí dụ nối 1 vi xử lý với 1 hay nhiều vi xử lý khác hoặc nối với bộ nhớ cục bộ (local bus). Trong vi xử lý cũng có một số bus để nối các thành phần bên trong của bộ vi xử lý với nhau. Người thiết kế chip vi xử lý có thể tuỳ ý lựa chọn loại bus bên trong nó, còn với các bus liên hệ bên ngoài cần phải xác định rõ các quy tắc làm việc cũng như các đặc điểm kỹ thuật về điện và cơ khí của bus để người thiết kế mainboard có thể ghép nối chip vi xử lý với các thiết bị khác. Nói cách khác, các bus này phải tuân theo 1 chuẩn nào đó. Tập các quy tắc của chuẩn còn được gọi là giao thức bus (bus protocol) Thường có nhiều thiết bị nối với bus, một số thiết bị là tích cực (active) có thể đòi hỏi truyền thông trên bus, trong khi đó có các thiết bị thụ động chờ yêu cầu từ các thiết bị khác. Các thiết bị tích cực được gọi là chủ (master) còn thiết bị thụ động là tớ (slave). Ví dụ: Khi CPU ra lệnh cho bộ điều khiển đĩa đọc/ghi một khối dữ liệu thì CPU là master còn bộ điều khiển đĩa là slave. Tuy nhiên, bộ điều khiển đĩa ra lệnh cho bộ nhớ nhận dữ liệu thì nó lại giữ vai trò master. CPU Registers ALU Đồng xử lý Memory board I/O board Bus cục bộ (local bus) Bus nội (on-chip bus) Bus hệ thống (system bus) Tài liệu Lập trình hệ thống Chương 1 Phạm Hùng Kim Khánh Tran ... của đường truyền và sử dụng dây xoắn đôi. Hình 4.13 – Chuẩn giao tiếp RS422 Hình 4.14 – Chuẩn giao tiếp RS485 Các đặc tính kỹ thuật: Đặc tính RS422 RS485 Số thiết bị truyền 1 32 Số thiết bị nhận 10 32 Tài liệu Lập trình hệ thống Chương 4 Phạm Hùng Kim Khánh Trang 115 Chiều dài cable cực đại 1200m 1200m Tốc độ truyền cực đại (từ 12 – 1200m) 10Mps – 100Kbps 10Mps – 100Kbps Điện áp cực đại tại ngõ ra thiết bị truyền -0.25V ÷ 6V -7V ÷ 12V Điện áp ngõ vào thiết bị nhận -10V ÷ 10V -7V ÷ 12V Đối với chuẩn RS232, khoảng cách truyền không cho phép đi xa nên khi muốn thực hiện truyền ở khoảng cách xa thì phải chuyển từ RS232 sang chuẩn RS485 để truyền đi và sau đó chuyển từ RS485 sang RS232 để máy tính có thể nhận dạng được. Sơ đồ mạch chuyển đổi từ RS232 sang RS485 và ngược lại mô tả như sau: Hình 4.15 – Chuyển đổi từ RS323 sang RS485 và ngược lại RO 1 DI 4 RE 2DE 3 A 6 B 7 MAX485 120 120 VCC 1 2 3 4 5 6 7 8 CON8 R1IN 13 R 2I N 8 T1IN 11 T 2I N 10 C+ 1 C1- 3 C2+ 4 C2- 5V+ 2 V- 6 R1OUT 12 R 2O U T 9 T1OUT 14 T 2O U T 7 MAX2325 9 4 8 3 7 2 6 1 DB9 10u 10u 10u VCC 10u 10u RO 1 DI 4 RE 2 DE 3 A 6 B 7 MAX485 Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 116 Chương 5 GIAO TIẾP CỐNG SONG SONG 1. Cấu trúc cổng song song Cổng song song gồm có 4 đường điều khiển, 5 đường trạng thái và 8 đường dữ liệu bao gồm 5 chế độ hoạt động: - Chế độ tương thích (compatibility). - Chế độ nibble. - Chế độ byte. - Chế độ EPP (Enhanced Parallel Port). - Chế độ ECP (Extended Capabilities Port). 3 chế độ đầu tiên sử dụng port song song chuẩn (SPP – Standard Parallel Port) trong khi đó chế độ 4, 5 cần thêm phần cứng để cho phép hoạt động ở tốc độ cao hơn. Sơ đồ chân của máy in như sau: Chân Tín hiệu Mô tả 1 STR (Out) Mức tín hiệu thấp, truyền dữ liệu tới máy in 2 D0 Bit dữ liệu 0 3 D1 Bit dữ liệu 1 4 D2 Bit dữ liệu 2 5 D3 Bit dữ liệu 3 6 D4 Bit dữ liệu 4 7 D5 Bit dữ liệu 5 8 D6 Bit dữ liệu 6 9 D7 Bit dữ liệu 7 10 ACK (In) Mức thấp: máy in đã nhận 1 ký tự và có khả năng nhận nữa 11 BUSY (In) Mức cao: ký tự đã được nhận; bộ đệm máy in đầy; khởi động máy in; máy in ở trạng thái off-line. 12 PAPER EMPTY (In) Mức cao: hết giấy 13 SELECT (In) Mức cao: máy in ở trạng thái online 14 AUTOFEED (Out) Tự động xuống dòng; mức thấp: máy in xuống dòng tự động 15 ERROR (In) Mức thấp: hết giấy; máy in ở offline; lỗi máy in 16 INIT (Out) Mức thấp: khởi động máy in 17 SELECTIN (Out) Mức thấp: chọn máy in 18-25 GROUND 0V Cổng song song có ba thanh ghi có thể truyền dữ liệu và điều khiển máy in. Địa chỉ cơ sở của các thanh ghi cho tất cả cổng LPT (line printer) từ LPT1 đến LPT4 được lưu trữ trong vùng dữ liệu của BIOS. Thanh ghi dữ liệu được định vị ở offset 00h, thanh ghi trang Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 117 thái ở 01h, và thanh ghi điều khiển ở 02h. Thông thường, địa chỉ cơ sở của LPT1 là 378h, LPT2 là 278h, do đó địa chỉ của thanh ghi trạng thái là 379h hoặc 279h và địa chỉ thanh ghi điều khiển là 37Ah hoặc 27Ah. Tuy nhiên trong một số trường hợp, địa chỉ của cổng song song có thể khác do quá trình khởi động của BIOS. BIOS sẽ lưu trữ các địa chỉ này như sau: Địa chỉ Chức năng 0000h:0408h Địa chỉ cơ sở của LPT1 0000h:040Ah Địa chỉ cơ sở của LPT2 0000h:040Ch Địa chỉ cơ sở của LPT3 Định dạng các thanh ghi như sau: Thanh ghi dữ liệu (hai chiều): 7 6 5 4 3 2 1 0 Tín hiệu máy in D7 D6 D5 D4 D3 D2 D1 D0 Chân số 9 8 7 6 5 4 3 2 Thanh ghi trạng thái máy in (chỉ đọc): 7 6 5 4 3 2 1 0 Tín hiệu máy in BUSY ACK PAPER EMPTY SELECT ERROR IRQ x x Số chân cắm 11 10 12 13 15 - - - Thanh ghi điều khiển máy in: 7 6 5 4 3 2 1 0 Tín hiệu máy in x x DIR IRQ Enable SELECTIN INIT AUTOFEED STROBE Số chân cắm - - - - 17 16 14 1 x: không sử dụng IRQ Enable: yêu cầu ngắt cứng; 1 = cho phép; 0 = không cho phép Chú ý rằng chân BUSY được nối với cổng đảo trước khi đưa vào thanh ghi trạng thái, các bit SELECTIN , AUTOFEED và STROBE được đưa qua cổng đảo trước khi đưa ra các chân của cổng máy in. Thông thường tốc độ xử lý dữ liệu của các thiết bị ngoại vi như máy in chậm hơn PC nhiều nên các đường ACK , BUSY và STR được sử dụng cho kỹ thuật bắt tay. Khởi đầu, PC đặt dữ liệu lên bus sau đó kích hoạt đường STR xuống mức thấp để thông tin cho máy in biết rằng dữ liệu đã ổn định trên bus. Khi máy in xử lý xong dữ liệu, nó sẽ trả lại tín hiệu ACK xuống mức thấp để ghi nhận. PC đợi cho đến khi đường BUSY từ máy in xuống thấp (máy in không bận) thì sẽ đưa tiếp dữ liệu lên bus. Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 118 2. Giao tiếp với thiết bị ngoại vi 2.1. Giao tiếp với máy tính Quá trình giao tiếp với cổng song song dùng 2 chế độ: chế độ chuẩn SPP và chế độ mở rộng. Việc giao tiếp ở chế độ chuẩn mô tả như sau: 13 25 12 24 11 23 10 22 9 21 8 20 7 19 6 18 5 17 4 16 3 15 2 14 1 13 25 12 24 11 23 10 22 9 21 8 20 7 19 6 18 5 17 4 16 3 15 2 14 1 Hình 5.1 - Trao đổi dữ liệu qua cổng song song giữa 2 PC dùng chế độ chuẩn Sơ đồ chân kết nối mô tả như sau: PC1 PC2 Chức năng Chân Chân Chức năng D0 2 15 ERROR D1 3 13 SELECT D2 4 12 PAPER EMPTY D3 5 10 ACK D4 6 11 BUSY BUSY 11 6 D4 ACK 10 5 D3 PAPER EMPTY 12 4 D2 SELECT 13 3 D1 ERROR 15 2 D0 GND 25 25 GND Ngoài ra, việc kết nối giữa 2 máy tính sử dụng cổng song song có thể dùng chế độ mở rộng, chế độ này cho phép giao tiếp với tốc độ cao hơn. Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 119 13 25 12 24 11 23 10 22 9 21 8 20 7 19 6 18 5 17 4 16 3 15 2 14 1 13 25 12 24 11 23 10 22 9 21 8 20 7 19 6 18 5 17 4 16 3 15 2 14 1 Hình 5.2 - Trao đổi dữ liệu qua cổng song song giữa 2 PC dùng chế độ mở rộng Sơ đồ chân kết nối mô tả như sau: PC1 PC2 Chức năng Chân Chân Chức năng D0 2 2 D0 D1 3 3 D1 D2 4 4 D2 D3 5 5 D3 D4 6 6 D4 D5 7 7 D5 D6 8 8 D6 D7 9 9 D7 SELECT 13 17 SELECTIN BUSY 11 16 INIT ACK 10 1 STROBE SELECTIN 17 13 SELECT INIT 16 11 BUSY STROBE 1 10 ACK 2.2. Giao tiếp thiết bị khác Quá trình giao tiếp với các thiết bị ngoại vi có thể thực hiện thông qua chế độ chuẩn. Để đọc dữ liệu, có thể dùng một IC ghép kênh 2Æ1 74LS257 và dùng 4 bit trạng thái của cổng song song còn xuất dữ liệu thì sử dụng 8 đường dữ liệu D0 – D7. Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 120 12 3 4 5 6 7 8 9 10K D0 3 D1 4 D2 7 D3 8 D4 13 D514 D6 17 D7 18 OE 1 CLK11 Q0 2 Q1 5 Q2 6 Q3 9 Q4 12 Q5 15 Q6 16 Q7 19 74LS374 SW0-7 9 8 74LS06 VCC STROBE PAPER EMPTY ACK D0 3 D1 4 D2 7 D3 8 D4 13 D5 14 D6 17 D7 18 OE 1 CLK 11 Q0 2 Q1 5 Q2 6 Q3 9 Q412 Q5 15 Q6 16 Q7 19 74LS374 13 25 12 24 11 23 10 22 9 21 8 20 7 19 6 18 5 17 4 16 3 15 2 14 1 G 15A/B 1 1Y 4 2Y 7 3Y 9 4Y 12 1A 2 2A 5 3A 11 4A 14 1B 3 2B 6 3B 10 4B 13 74LS257 12 3 4 5 6 7 8 9 10K1 VCC 12 74LS06 3 4 74LS06 5 6 74LS06 BUSY SELECT SELECT IN AUTO FEED Hình 5.3 – Mạch giao tiếp đơn giản thông qua cổng máy in Giao diện: Hình 5.4 – Giao diện của chưnơg trình giao tiếp với cổng máy in Chương trình giao tiếp trên VB sử dụng thư viện liên kết động để trao đổi dữ liệu với cổng máy in. Thư viện IO.DLL bao gồm các hàm sau: - Hàm PortOut: xuất 1 byte ra cổng Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 121 Private Declare Sub PortOut Lib "IO.DLL" (ByVal Port As Integer, ByVal Data As Byte) Port: địa chỉ cổng, Data: dữ liệu xuất - Hàm PortWordOut: xuất 1 word ra cổng Private Declare Sub PortWordOut Lib "IO.DLL" (ByVal Port As Integer, ByVal Data As Integer) - Hàm PortDWordOut: xuất 1 double word ra cổng Private Declare Sub PortDWordOut Lib "IO.DLL" (ByVal Port As Integer, ByVal Data As Long) - Hàm PortIn: nhập 1 byte từ cổng, trả về giá trị nhập Private Declare Function PortIn Lib "IO.DLL" (ByVal Port As Integer) As Byte - Hàm PortWordIn: nhập 1 word từ cổng Private Declare Function PortWordIn Lib "IO.DLL" (ByVal Port As Integer) As Integer - Hàm PortDWordIn: nhập 1 double word từ cổng Private Declare Function PortDWordIn Lib "IO.DLL" (ByVal Port As Integer) As Long Chương trình nguồn: VERSION 5.00 Begin VB.Form Form1 Caption = "Printer Interface Example" ClientHeight = 4665 ClientLeft = 60 ClientTop = 345 ClientWidth = 3585 LinkTopic = "Form1" ScaleHeight = 4665 ScaleWidth = 3585 StartUpPosition = 3 'Windows Default Begin VB.CommandButton cmdReceive Caption = "Receive" Height = 495 Left = 1200 TabIndex = 18 Top = 3960 Width = 1095 Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 122 End Begin VB.CheckBox chkSW Height = 375 Index = 7 Left = 1800 TabIndex = 17 Top = 3480 Width = 1575 End Begin VB.CheckBox chkSW Height = 375 Index = 6 Left = 1800 TabIndex = 16 Top = 3000 Width = 1575 End Begin VB.CheckBox chkSW Height = 375 Index = 5 Left = 1800 TabIndex = 15 Top = 2520 Width = 1575 End Begin VB.CheckBox chkSW Height = 375 Index = 4 Left = 1800 TabIndex = 14 Top = 2040 Width = 1575 End Begin VB.CheckBox chkSW Height = 375 Index = 3 Left = 1800 Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 123 TabIndex = 13 Top = 1560 Width = 1575 End Begin VB.CheckBox chkSW Height = 375 Index = 2 Left = 1800 TabIndex = 12 Top = 1080 Width = 1575 End Begin VB.CheckBox chkSW Height = 375 Index = 1 Left = 1800 TabIndex = 11 Top = 600 Width = 1575 End Begin VB.CheckBox chkSW Height = 375 Index = 0 Left = 1800 TabIndex = 10 Top = 120 Width = 1575 End Begin VB.CommandButton cmdExit Caption = "Exit" Height = 495 Left = 2400 TabIndex = 9 Top = 3960 Width = 975 End Begin VB.CommandButton cmdSend Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 124 Caption = "Send" Height = 495 Left = 0 TabIndex = 8 Top = 3960 Width = 1095 End Begin VB.Label lblLED BackStyle = 0 'Transparent Caption = "LED7" Height = 375 Index = 7 Left = 240 TabIndex = 7 Top = 3480 Width = 1095 End Begin VB.Label lblLED BackStyle = 0 'Transparent Caption = "LED6" Height = 375 Index = 6 Left = 240 TabIndex = 6 Top = 3000 Width = 975 End Begin VB.Label lblLED BackStyle = 0 'Transparent Caption = "LED5" Height = 375 Index = 5 Left = 240 TabIndex = 5 Top = 2520 Width = 975 End Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 125 Begin VB.Label lblLED BackStyle = 0 'Transparent Caption = "LED4" Height = 375 Index = 4 Left = 240 TabIndex = 4 Top = 2040 Width = 975 End Begin VB.Label lblLED BackStyle = 0 'Transparent Caption = "LED3" Height = 375 Index = 3 Left = 240 TabIndex = 3 Top = 1560 Width = 975 End Begin VB.Label lblLED BackStyle = 0 'Transparent Caption = "LED2" Height = 375 Index = 2 Left = 240 TabIndex = 2 Top = 1080 Width = 975 End Begin VB.Label lblLED BackStyle = 0 'Transparent Caption = "LED1" Height = 375 Index = 1 Left = 240 TabIndex = 1 Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 126 Top = 600 Width = 975 End Begin VB.Label lblLED BackStyle = 0 'Transparent Caption = "LED0" Height = 375 Index = 0 Left = 240 TabIndex = 0 Top = 120 Width = 975 End Begin VB.Shape shpLED BorderColor = &H000000FF& FillColor = &H000000FF& FillStyle = 0 'Solid Height = 375 Index = 7 Left = 840 Shape = 3 'Circle Top = 3480 Width = 375 End Begin VB.Shape shpLED BorderColor = &H000000FF& FillColor = &H000000FF& FillStyle = 0 'Solid Height = 375 Index = 6 Left = 840 Shape = 3 'Circle Top = 3000 Width = 375 End Begin VB.Shape shpLED BorderColor = &H000000FF& Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 127 FillColor = &H000000FF& FillStyle = 0 'Solid Height = 375 Index = 5 Left = 840 Shape = 3 'Circle Top = 2520 Width = 375 End Begin VB.Shape shpLED BorderColor = &H000000FF& FillColor = &H000000FF& FillStyle = 0 'Solid Height = 375 Index = 4 Left = 840 Shape = 3 'Circle Top = 2040 Width = 375 End Begin VB.Shape shpLED BorderColor = &H000000FF& FillColor = &H000000FF& FillStyle = 0 'Solid Height = 375 Index = 3 Left = 840 Shape = 3 'Circle Top = 1560 Width = 375 End Begin VB.Shape shpLED BorderColor = &H000000FF& FillColor = &H000000FF& FillStyle = 0 'Solid Height = 375 Index = 2 Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 128 Left = 840 Shape = 3 'Circle Top = 1080 Width = 375 End Begin VB.Shape shpLED BorderColor = &H000000FF& FillColor = &H000000FF& FillStyle = 0 'Solid Height = 375 Index = 1 Left = 840 Shape = 3 'Circle Top = 600 Width = 375 End Begin VB.Shape shpLED BorderColor = &H000000FF& FillColor = &H000000FF& FillStyle = 0 'Solid Height = 375 Index = 0 Left = 840 Shape = 3 'Circle Top = 120 Width = 375 End End Attribute VB_Name = "Form1" Attribute VB_GlobalNameSpace = False Attribute VB_Creatable = False Attribute VB_PredeclaredId = True Attribute VB_Exposed = False 'IO.DLL Private Declare Sub PortOut Lib "IO.DLL" (ByVal Port As Integer, ByVal Data As Byte) Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 129 Private Declare Function PortIn Lib "IO.DLL" (ByVal Port As Integer) As Byte 'Variable Private BA_LPT As Integer Private Sub cmdExit_Click() End End Sub Private Sub cmdReceive_Click() Dim n As Integer Dim n1 As Integer Dim i As Integer PortOut BA_LPT + 2, &H8 'SELECTIN = 1 PortOut BA_LPT + 2, 0 'SELECTIN = 0 n1 = PortIn(BA_LPT + 1) 'Doc 4 bit thap n1 = n1 / &H10 'Dich phai 4 bit PortOut BA_LPT + 2, 2 'AUTOFEED=1 n = PortIn(BA_LPT + 1) 'Doc 4 bit cao n = n And &HF0 n = n + n1 For i = 0 To 7 chkSW(i).Value = n Mod 2 If chkSW(i).Value = 0 Then chkSW(i).Caption = "Switch " & Str(i) & " off" Else chkSW(i).Caption = "Switch " & Str(i) & " on" End If n = Fix(n / 2) Next i End Sub Private Sub cmdSend_Click() Dim t As Integer Dim i As Integer Tài liệu Lập trình hệ thống Chương 5 Phạm Hùng Kim Khánh Trang 130 Dim s As String t = 0 For i = 0 To 7 t = t + (2 ^ i) * (1 - shpLED(i).FillStyle) Next i PortOut BA_LPT, t PortOut BA_LPT, 1 'STROBE = 1 PortOut BA_LPT, 0 'STROBE = 0 End Sub Private Sub Form_Load() BA_LPT = &H378 PortOut BA_LPT + 2, 0 End Sub Private Sub lblLED_Click(Index As Integer) shpLED(Index).FillStyle = 1 - shpLED(Index).FillStyle End Sub
File đính kèm:
- giao_trinh_he_thong_tu_sach_may_tinh.pdf