Cấu trúc các C* – đại số Connes liên kết với một lớp con các MD5 – nhóm
Bài báo này là công trình tiếp nối hai bài báo [18], [19] của các tác giả. Trong [18],
chúng tôi đã xét các phân lá tạo thành bởi các K – quỹ đạo chiều cực đại (các MD5 – phân
lá) của các MD5 – nhóm liên thông mà các đại số Lie của chúng có ideal dẫn xuất giao
hoán 4 chiều và đưa ra một phân loại tô pô tất cả các MD5 – phân lá được xét. Trong [19],
chúng tôi đã nghiên cứu K – lý thuyết đối với không gian lá của một vài MD5 – phân lá
trong số đó, mô tả giải tích đồng thời đặc trưng các C* – đại số của Connes liên kết với
một số phân lá đó bằng phương pháp K – hàm tử. Trong bài này, chúng tôi xét bài toán
tương tự đối với tất cả các MD5 – phân lá còn lại.
Bạn đang xem tài liệu "Cấu trúc các C* – đại số Connes liên kết với một lớp con các MD5 – nhóm", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Cấu trúc các C* – đại số Connes liên kết với một lớp con các MD5 – nhóm
Tạp chí KHOA HỌC ĐHSP TP HCM Le Anh Vu et al. _____________________________________________________________________________________________________________ 15 THE STRUCTURE OF CONNES’ C* – ALGEBRAS ASSOCIATED TO A SUBCLASS OF MD5 – GROUPS LE ANH VU*, DUONG QUANG HOA** ABSTRACT The paper is a continuation of the authors’ works [18], [19]. In [18], we consider foliations formed by the maximal dimensional K-orbits (MD5-foliations) of connected MD5-groups that their Lie algebras have 4-dimensional commutative derived ideals and give a topological classification of the considered foliations. In [19], we study K-theory of the leaf space of some of these MD5-foliations, analytically describe and characterize the Connes’ C*-algebras of the considered foliations by the method of K-functors. In this paper, we consider the similar problem for all remains of these MD5-foliations. Key words: Lie group, Lie algebra, MD5-group, MD5-algebra, K-orbit, Foliation, Measured foliation, C*-algebra, Connes’ C*-algebras associated to a measured foliation. TÓM TẮT Cấu trúc các C* – đại số Connes liên kết với một lớp con các MD5 – nhóm Bài báo này là công trình tiếp nối hai bài báo [18], [19] của các tác giả. Trong [18], chúng tôi đã xét các phân lá tạo thành bởi các K – quỹ đạo chiều cực đại (các MD5 – phân lá) của các MD5 – nhóm liên thông mà các đại số Lie của chúng có ideal dẫn xuất giao hoán 4 chiều và đưa ra một phân loại tô pô tất cả các MD5 – phân lá được xét. Trong [19], chúng tôi đã nghiên cứu K – lý thuyết đối với không gian lá của một vài MD5 – phân lá trong số đó, mô tả giải tích đồng thời đặc trưng các C* – đại số của Connes liên kết với một số phân lá đó bằng phương pháp K – hàm tử. Trong bài này, chúng tôi xét bài toán tương tự đối với tất cả các MD5 – phân lá còn lại. Từ khóa: Nhóm Lie, Đại số Lie, MD5-nhóm, MD5-đại số, K-quỹ đạo, Phân lá, Phân lá đo được, C*-đại số, C*-đại số Connes liên kết với một phân lá đo được. 1. Introduction In the years of 1970s-1980s, the works of Diep [4], Rosenberg [10], Kasparov [7], Son and Viet [12], showed that K-functors are well adapted to characterize a large class of group C*-algebras. In 1982, studying foliated manifolds, Connes [3] introduced the notion of C*-algebra associated to a measured foliation. Once again, the method of K-functors has been proved as very effective in describing the structure of Connes’ C*-algebras in the case of Reeb foliations (see Torpe [14]). * Department of Mathematics and Economic Statistics, University of Economics and Law, Vietnam National University, Ho Chi Minh City ** Department of Mathematics and Infomatics, Ho Chi Minh City University of Education, Vietnam. Tạp chí KHOA HỌC ĐHSP TP HCM Số 27 năm 2011 _____________________________________________________________________________________________________________ 16 Kirillov’s method of orbits (see [8, Section 15]) allows to find out the class of Lie groups MD, for which the group C*-algebras can be characterized by means of suitable K- functors (see [5]). Moreover, for every MD-group G, the family of K- orbits of maximal dimension forms a measured foliation in terms of Connes (see [3, Section 2, 5]). This foliation is called MD-foliation associated to G. Recall that an MD-group of dimension n (for short, an MDn-group), in terms of Diep, is an n-dimensional solvable real Lie group whose orbits in the co-adjoining representation (i.e., the K- representation) are the orbits of zero or maximal dimension. The Lie algebra of an MDn-group is called an MDn-algebra (see [5, Section 4.1]). Combining methods of Kirillov and Connes, the first author studied MD4- foliations associated with all indecomposable connected MD4-groups in [16]. Recently, Vu and Shum [17] have classified, up to isomorphism, all the 5-dimensional MD- algebras having commutative derived ideals. In [18], we have given a topological classification of MD5-foliations associated to the indecomposable connected and simply connected MD5-groups, such that MD5- algebras of them have 4-dimensional commutative derived ideals. There are exactly 3 topological types of considered MD5-foliations which are denoted by F1, F2, F3. All MD5-foliations of type F1 are the trivial fibrations with connected fibre on 3- dimensional sphere S3, so Connes’ C*-algebras C*( F1) of them are isomorphic to the C*-algebra 3C S K following [3, Section 5], where K denotes the C*-algebra of compact operators on an (infinite dimensional separable) Hilbert space. In [19], we study K-theory of the leaf space and to characterize the structure of Connes’ C*-algebra C*(F2) of all MD5-foliations of type F2 by method of K-functors. The purpose of this paper is to study the similar problem for all MD5-foliations of type F3. Namely, we will express C*(F3) for all MD5-foliations of type F3 by a single extension of the form 0 3 00 * 0C X K C C Y K F , then we will compute the invariant system of C*(F3) with respect to this extension. Note that if the given C*-algebra is isomorphic to the reduced crossed product of the form 0C V ⋊H , where H is a Lie group, then we can use the Thom-Connes isomorphism to compute the connecting map 0 1, . 2. The MD5-foliations of type F3 Originally, we recall geometry of K-orbits of MD5-groups which associate with MD5-foliations of type F3 (see [17]). In this section, G will be always one of connected and simply connected MD5- groups 5,4,14( , , ) G which are studied in [17] and [18]. Then, the Lie algebra G of G will be the one of the Lie algebras 5,4,14 ( , , ) G (see [17] or [18]). Namely, G is the Tạp chí KHOA HỌC ĐHSP TP HCM Le Anh Vu et al. _____________________________________________________________________________________________________________ 17 Lie algebra generated by 1 2 3 4 5, , , ,X X X X X with 42 3 4 5: , . . . .X X X X 1G G G and 1 41Xad End Mat G as follows 1 cos sin 0 0 sin cos 0 0 : ; , , 0, 0, . 0 0 0 0 Xad We now recall the geometric description of the K-orbits of G in the dual space G* of G. Let * * * * *1 2 3 4 5, , , ,X X X X X be the basis in G* dual to the basis 1 2 3 4 5, , , ,X X X X X in G. Denote by F the K-orbit of G including , ,F i i in * 5 G . - If 0i i then F F (the 0-dimension orbit), - If 2 2 0i i then F is the 2-dimension orbit as follows ., . , . , , .ia e a iF x i e i e x a In [18], we show that, the family F of maximal-dimension K-orbits of G forms measure foliation in terms of Connes on the open sub-manifold ** 2 2 2 2 4, , , , : 0V x y z t s y z t s G . Furthermore, all the foliations 5,4,14 , ,, , , , 0, 0;V F , are topologically equivalent to each other and we denote them by F3 . So we only choose a “envoy” among them to describe the structure of C*(F3) by K-functors. In this case, we choose the foliation 5,4,14 0,1, 2 ,V F . In [18], we also describe the foliation 5,4,14 0,1, 2 ,V F by suitable action of 2 . Namely, we have the following assertion. Proposition 2.1. The foliation 5,4,14 0,1, 2 ,V F can be given by an action of the commutative Lie group 2 on the manifold V. Tạp chí KHOA HỌC ĐHSP TP HCM Số 27 năm 2011 _____________________________________________________________________________________________________________ 18 Proof. One needs only to verify that the foliation 5,4,14 0,1, 2 ,V F is given by the action 2: V V of 2 on V as follows r a x y iz t is, , , , : = ia iax r y iz e t is e, . , . , where r a x y iz t is V2 4, and , , . Hereafter, for simply, we write F3 instead of 5,4,14 0,1, 2 ,V F . It is easy to see that the graph of F3 is identified with 2V , so by [3, Section 5], it follows from Proposition 2.1 that Corollary 2.2. (Analytical description of C*(F3)) The Connes’ C*-algebra C*(F3) can be analytically described by the reduced crossed product of 0C V by 2 as follows C*(F3) 0C V ⋊ 2 . 3. C*(F3) as a single extension 3.1. Let 1 1, V W be the following sub-manifolds of V *1 , , : 0V x y iz t is V t is , *1 1\ , , : 0W V V x y iz t is V t is . It is easy to see that the action in Proposition 2.1 preserves the subsets 1 1, V W . Let , i be the inclusion and the restriction 0 1 0:i C V C V , 0 0 1: C V C W . where each function of 0 1C V is extended to the one of 0C V by taking the value of zero outside 1V . It is known a fact that , i are - equivariant and the following sequence is equivariantly exact: (3.1) 0 1 0 0 10 0iC V C V C W . 3.2. Now we denote by 1 1 1 1, , ,V WF F restrictions of the foliations F3 on 1 1, V W , respectively. Theorem 3.1. C*( F3) admits the following canonical extension 1 3 0 * 0iJ C B F , Tạp chí KHOA HỌC ĐHSP TP HCM Le Anh Vu et al. _____________________________________________________________________________________________________________ 19 where * 1 1 0 1,J C V C V F ⋊ 2 0C K , * 1 1 0 1,B C W C W F ⋊ 2 0C K , 3 0*C C VF ⋊ 2 . and the homomorphism , i is defined by , , , , ,i f r s if r s f r s f r s . Proof. Note that the graph of F3 is identified with 2V , so by [3, section 5], we have: * 1 1 0 1,J C V C V F ⋊ 2 , * 1 1 0 1,B C W C W F ⋊ 2 . From -equivariantly exact sequence in 3.1 and by [2, Lemma 1.1] we obtain the single extension 1 . Furthermore, the foliations 1 1,V F and 1 1,W F can be come from the submersions * ' : and , , ' , 'i i i p V x re r e re r *: , i q W x re r Hence, by a result of [3, p.562], we get * 1 1 0 1,J C V C V F ⋊ 2 0C K , * 1 1 0 1,B C W C W F ⋊ 2 0C K . 4. Computing the invariant system of 3*C F Definition 4.1. The set of element 1 corresponding to the single extension 1 in the Kasparov group Ext ,B J is called the system of invariant of 3*C F and denoted by Index 3*C F . Remark 4.2. Index 3*C F determines the so-called table type of 3*C F in the set of all single extension 0 0J E B . The main result of the paper is the following Theorem 4.3. Index 3 1*C F , where 1 0,1 in the group , , ,Ext B J Hom Hom . Tạp chí KHOA HỌC ĐHSP TP HCM Số 27 năm 2011 _____________________________________________________________________________________________________________ 20 To prove this theorem, we need some lemmas as follows Lemma 4.4. Set 2 1 10 and I C S A C S . The following diagram is commutative 3 1... ...j j j jK I K C S K A K I 0 1 0 0 1 1 0 1... ...j j j jK C V K C V K C W K C V where 2 is the Bott isomorphism, / 2j . Proof. Let 2 1 30:k C S C S , 3 1:v C S C S . be the inclusion and restriction defined similarly as in 3.1. One gets the exact sequence 30 0k vI C S A . Note that 2 10 1 0 0 0C V C C S C I 3 30 0 0C V C S C C S 10 1 0 0C W C C S C A So, the extension (3.1) can be identified to the following one 30 0 00 0Id k Id vC I C C S C A . So, the assertion of lemma is derived from the naturalness of Bott isomorphism. Remark 4.5. i) 2 1 10 0 , / 2j jK C S K C S j . ii) 3 , / 2jK C S j . iii) 10K C S is generated by 0 2 1 , 11K C S is generated by 1 2 Id (where 1 is a unit element in 1C S ; , / 2j j , is the Thom-Connes isomorphism; Id is the identity of 1S ). Proof of Theorem 4.3. Recall that the extension 1 in theorem 3.1 gives the rise to a six-term exact sequence 2 2 2 2 Tạp chí KHOA HỌC ĐHSP TP HCM Le Anh Vu et al. _____________________________________________________________________________________________________________ 21 0 1 0 0 3 0*K J K C K B F (4.1) 1 1 3 1*K B K C K J F By [11, Theorem 4.14], the isomorphism 0 1 1 0, , ,Ext B J Hom K B K J Hom K B K J associates the invariant 1 ,Ext B J to the pair 0 1 0 1 1 0, , ,Hom K B K J Hom K B K J . Since the Thom-Connes isomorphism commutes with K-theoretical exact sequence (see [14, Lemma 3.4.3]), we have the following commutative diagram / 2j : 3 1... * ...j j j jK J K C K B K J F In view of Lemma 4.4, the following diagram is commutative 0 1 0 0 1 1 0 1... ...j j j jK C V K C V K C W K C V Consequently, instead of computing the pair 0 1, from the direct sum 0 1 1 0, ,Hom K B K J Hom K B K J , it is sufficient to compute the pair 0 1 0 1 1 0, , ,Hom K A K I Hom K A K I . In other words, the six- term exact sequence (4.1) can be identified with the following one 2 1 3 10 0 0 0K C S K C S K C S (4.2) 1 3 2 11 1 1 0K C S K C S K C S By remark 3.5, this sequence becomes (4.3) 0 By the exactness, the sequence (4.3) will be the one of the following ones 0 1 2 2 2 2 j j j 1j 0 1 0 0 1 1 0 1... ...j j j jK C V K C V K C W K C V 3 1... ...j j j jK I K C S K A K I 1 Tạp chí KHOA HỌC ĐHSP TP HCM Số 27 năm 2011 _____________________________________________________________________________________________________________ 22 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 or 1 0 1 0 Now we choose 11ia e GL C S , 1b a . Then 0 1200 i i e a b GL C S e . Let u = 1 2 1 2 1 2 1, , , cos cos cos ,cos cos sin ,cos sin ,sinu x y z t u 1 1 0 32 2 2 2 2 . .cos sin sin . .cos ii ii e e GL C S e e is a pre-image of a b . So, 1 1 1 2 2 2 2 cos sin sin cos ii ii e e u e e . Let 1 1 1 0 0 0 0 q I . We get 1 1 2 1 2 12 2 2 2 02 2 2 2 cos cos sin cos sin sin ii ii e e p uqu P C S e e . Then rank (p) = 1. So 2 11 1 0 00a p I K C S . Therefore, K- theoretical exact sequence associate to 1 is 0 1 0 1 The proof is completed. Tạp chí KHOA HỌC ĐHSP TP HCM Le Anh Vu et al. _____________________________________________________________________________________________________________ 23 REFERENCES 1. Brown L. G.; Douglas R. G., Fillmore P. A. (1977), “Extension of C*-algebra and K- homology”, Ann. of Math, 105, pp. 265 – 324. 2. Connes A. (1981), “An Analogue of the Thom Isomorphism for Crossed Products of a C*–algebra by an Action of ”, Adv. In Math., 39, pp. 31 – 55. 3. Connes A. (1982), “A Survey of Foliations and Operator Algebras”, Proc. Sympos. Pure Mathematics, 38, pp. 521 – 628. 4. Diep D. N. (1975), “Structure of the group C*-algebra of the group of affine transformations of the line”, Funktsional. Anal. I Prilozhen, 9, pp. 63 – 64 (in Russian). 5. Diep D. N. (1999), Method of Non-commutative Geometry for Group C*-algebras. Research Notes in Mathematics Series, vol. 416. Cambridge: Chapman and Hall- CRC Press. 6. Gelfand I., Naimark A. (1943), “On the imbedding of normed rings into the ring of operators in Hilbert space”, Mat. sb., 12, pp. 197 – 213 (in Russian). 7. Kasparov G. G. (1981), “The operator K-functor and extensions of C*-algebras”, Math. USSR Izvestija, 16(3), pp. 513 – 572. 8. Kirillov A. A. (1976), Elements of the Theory of Representations, Springer – Verlag Pub., Berlin – Heidenberg – New York. 9. Rordam, M., Larsen F., Laustsen N. (2000), An Introduction to K –Theory for C*– Algebras, Cambridge University Press, United Kingdom. 10. Rosenberg J. (1976), “The C*-algebras of some real p-adic solvable groups”, Pacific J. Math., 65(1), pp. 175 – 192. 11. Rosenberg J. (1982), “Homological invariants of extension of C*-algebras”, Proc. Sympos. Pure Math., 38, AMS Providence R.I., pp. 35 – 75. 12. Son V. M. ; Viet H. H. (1984), “Sur la structure des C*-algebres d’une classe de groupes de Lie”, J. Operator Theory, 11, pp. 77 – 90. 13. Taylor J. L., Banach Algebras and Topology (1975), Academic Press in Algebras and Analysis, New York, pp 118–186. 14. Torpe A. M. (1985), “K-theory for the Leaf Space of Foliations by Reeb Component”, J. Func. Anal., 61, pp. 15-71. 15. Vu L. A. (1990), "On the structure of the *C –Algebra of the Foliation formed by the K –Orbits of maximal dimension of the Real Diamond Group", Journal of Operator theory, 24, pp. 227–238. 16. Vu L. A. (1990), The foliation formed by the K – orbits of Maximal Dimension of the MD4-group, PhD Thesis , Ha Noi (in Vietnamese). (Continued page 53) Tạp chí KHOA HỌC ĐHSP TP HCM Số 27 năm 2011 _____________________________________________________________________________________________________________ 24 17. Vu L. A., Shum K. P. (2008), “Classification of 5-dimensional MD-algebra having commutative derived ideals”, Advances in Algebra and Combinatorics, Singapore: World Scientific co, pp. 353-371. 18. Vu L. A., Hoa D. Q. (2009), “The topology of foliations formed by the generic K- orbits of a subclass of the indecomposable MD5-groups”, Science in China, series A: Mathematics, 52 (2), pp. 351-360. 19. Vu L. A.; Hoa D. Q. (2010), “K-theory of the leaf space of foliations formed by the generic K-orbits of some indecomposable MD5-groups”, Vietnam Journal of Mathematics, 38 (2), pp. 249 – 259.
File đính kèm:
- cau_truc_cac_c_dai_so_connes_lien_ket_voi_mot_lop_con_cac_md.pdf