Bài giảng Toán kinh tế 1 - Chương 1: Ma trận, định thức - Nguyễn Ngọc Lam
Định nghĩa:
• Một dòng của ma trận được gọi là dòng 0 nếu nó chỉ gồm
những phần tử 0.
• Ngược lại, nếu một dòng của ma trận có ít nhất một phần
tử khác 0 thì được gọi là dòng khác 0.
• Phần tử khác 0 đầu tiên của một dòng được gọi là phần
tử chính của dòng đó.
Ma trận A được gọi là ma trận bậc thang khi thoả các
điều kiện sau:
• A không có dòng 0 hoặc dòng 0 luôn ở dưới các dòng
khác 0.
• Nếu A có ít nhất 2 dòng khác 0 thì đối với 2 dòng khác 0
tuỳ ý của A, phần tử chính của dòng dưới luôn nằm bên
phải cột chứa phần tử chính của dòng trên.
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Toán kinh tế 1 - Chương 1: Ma trận, định thức - Nguyễn Ngọc Lam", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Toán kinh tế 1 - Chương 1: Ma trận, định thức - Nguyễn Ngọc Lam
4/25/2018 1 C1. MA TRẬN - ĐỊNH THỨC 1 Ma trận 2 Định thức 3 Ma trận nghịch đảo 4 Hạng của ma trận 4/25/2018 2 1. MA TRẬN 1.1. CÁC ĐỊNH NGHĨA 1.1.1. Định nghĩa ma trận: Một bảng số chữ nhật có m hàng và n cột gọi là ma trận cấp m x n nmijnmij mnmm n n aa aaa aaa aaa A x x 21 22221 11211 )(][ ... ............ ... ... • aij là phần tử của ma trận A ở hàng i cột j. • Ma trận ký hiệu chữ IN. • Phần tử ghi chữ thường và kèm theo chỉ số. 4/25/2018 3 1. MA TRẬN Trong thực tiễn các bảng 2 chiều đều là một ma trận: Đại lý Sản phẩm A B C D 1 150 230 210 180 2 225 175 200 350 3 120 425 175 380 380175425120 350200175225 180210230150 43xQ Yếu tố hàng là đại lý, yếu tố cột là số sản phẩm tiêu thụ. 4/25/2018 4 1. MA TRẬN 1.1.2. Ma trận vuông: Ma trận vuông: Khi m = n nnnn n n n aaa aaa aaa A ... ............ ... ... 21 22221 11211 • a11,a22,ann được gọi là các phần tử chéo. • Đường thẳng xuyên qua các phần tử chéo gọi là đường chéo chính. 4/25/2018 5 1. MA TRẬN Ma trận tam giác trên: aij = 0 nếu i > j nn n n nn n n a aa aaa a aa aaa A ...... ... ... ...00 ............ ...0 ... 222 11211 222 11211 Ma trận tam giác dưới: aij = 0 nếu i < j nnnnnnnn aaa aa a aaa aa a A ... ......... ... ............ 0... 0...0 21 2221 11 21 2221 11 4/25/2018 6 1. MA TRẬN Ma trận chéo: aij = 0 nếu i ≠ j nnnn a a a a a a A ... ...00 ............ 0...0 0...0 22 11 22 11 Ma trận đơn vị: I = [aij]n x n với aij=1,i=j; aij = 0, i≠j 1 ... 1 1 1...00 ............ 0...10 0...01 I 4/25/2018 7 1. MA TRẬN 1.1.3. Vectơ hàng(cột): Ma trận chỉ có một hàng(cột) 1.1.4. Ma trận không: 0...00 ............ 0...00 0...00 mxn 1.1.4. Ma trận bằng nhau: A=B 1) A = [aij]m x n; B = [bij]m x n 2) aij = bij với mọi i,j Ví dụ, tìm X=B: 25 13 ,B ttz tzytzyx X 4/25/2018 8 1. MA TRẬN 1.1.5. Ma trận chuyển vị: A = [aij]m x n => A T = [aji]n x m 419 224 693 741 AVí dụ: tìm AT: 1.1.6. Ma trận đối xứng: A = AT 4647 6315 4123 7531 AVí dụ: 4/25/2018 9 1. MA TRẬN 1.2. CÁC PHÉP TOÁN TRÊN MA TRẬN: 1.2.1. Phép cộng hai ma trận 1. Định nghĩa: A = [aij]mxn; B = [bij]mxn => A+B = [aij+bij]mxn 531 394 032 412 X 2. Tính chất: • A + B = B + A • (A + B) + C = A + (B + C) • + A = A • Nếu gọi -A = [-aij]m x n thì ta có -A + A = Ví dụ, tìm X: 4/25/2018 10 1. MA TRẬN 1.2.2. Phép nhân một số với ma trận: 1. Định nghĩa: cho A = [aij]m x n, k R => kA = [kaij]m x n 853 142 A 2. Tính chất: cho k, h R: • k(A + B) = kA + kB • (k + h)A = kA + hA Tính 3A? 4/25/2018 11 1. MA TRẬN 1.2.3. Phép nhân hai ma trận: 1. Định nghĩa : A=[aik]m x p; B=[bkj]p x nz=> C = AB= [cij]m x n: p 1k kjikpjip2ji21ji1ij baba...babac Thuật toán: Hàng i ma trận A x Cột j ma trận B 4/25/2018 12 1. MA TRẬN 2. Một số tính chất: • (A.B).C = A.(B.C) • A(B+C) = AB + AC • (B+C)A = BA + CA • k(BC) = (kB)C = B(kC) • Phép nhân nói chung không có tính giao hoán • A=[aij]n x n => I.A = A.I = A 1203 0112 1321 123 112 Ví dụ: Tính: 4/25/2018 13 1. MA TRẬN 1.3. VÍ DỤ Ví dụ 1: Tìm lượng hàng bán trong hai tháng. Tháng 1 A B C D CH1 10 2 40 15 CH2 4 1 35 20 Tháng 2 A B C D CH1 12 4 20 10 CH2 10 3 15 15 4/25/2018 14 1. MA TRẬN Ví dụ 2: Hãy tính nhu cầu vật tư cho từng phân xưởng theo kế hoạch sản xuất cho bởi 2 bảng số liệu sau: Phân xưởng Sản phẩm A B C PX1 10 0 5 PX2 0 8 4 PX3 0 2 10 Sản phẩm Vật liệu VL1 VL2 VL3 VL4 VL5 A 1 2 0 2 0 B 0 1 1 2 0 C 0 0 2 1 3 4/25/2018 15 2. ĐỊNH THỨC 2.1. ĐỊNH NGHĨA: A là ma trận vuông cấp 2: A là ma trận vuông cấp 1: A= [a11] thì det(A) = |A| = |a11| 2221 1211 aa aa A Có 2 cách định nghĩa: theo truy hồi và thế vị. Dưới đây là định nghĩa theo phương pháp truy hồi: 21122211 2221 1211 det(A) aaaa aa aa A 4/25/2018 16 2. ĐỊNH THỨC nnnn n n nnnn n n aaa aaa aaa aaa aaa aaa A ... ............ ... ... A , ... ............ ... ... 21 22221 11211 21 22221 11211 • Aij là ma trận con cấp n-1 nhận được từ A bằng cách xoá hàng i cột j. Aij: ma trận con bù của aij • cij = (-1) i+jdet(Aij) là phần bù đại số của aij • C = (cij): Ma trận phần bù đại số của A • A là ma trận vuông cấp n: 4/25/2018 17 2. ĐỊNH THỨC Ví dụ: Sử dụng định nghĩa hãy tính định thức: 513 321 342 A • Định thức cấp n của A là: det(A) = a11c11 + a12c12 + + a1nc1n n j jj j n j jj AacaA 1 11 1 1 11 )det()1()det( 4/25/2018 18 2. ĐỊNH THỨC 2.2. TÍNH CHẤT CỦA ĐỊNH THỨC: • Tính chất 1:AT=A Hệ quả: Một phát biểu của định thức đúng theo hàng thì đúng theo cột. • Tính chất 2: Đổi chỗ hai hàng (cột) định thức đổi dấu. Hệ quả: Định thức triển khai theo bất kỳ hàng nào. 1200 15925 4100 2103 AVí dụ: Tính: 4/25/2018 19 2. ĐỊNH THỨC • Tính chất 3: Một định thức có hai hàng (cột) bằng nhau thì bằng không. • Tính chất 4: Một định thức có một hàng (cột) toàn là số không thì bằng không. 1201 159215 4104 2102 A 4/25/2018 20 2. ĐỊNH THỨC • Tính chất 5: Nhân các phần tử của một hàng (cột) với cùng một số k (k 0) thì được một định thức mới bằng định thức cũ nhân với k. Hệ quả: Ta có thể đưa thừa số chung của một hàng (cột) ra ngoài định thức. ABA 3 34 36 34 12 Ví dụ: 4/25/2018 21 2. ĐỊNH THỨC • Tính chất 10: Định thức ma trận tam giác bằng tích các phần tử chéo: nn n n a aa aaa A ...00 ............ ...0 ... 222 11211 nnaaaA ...2211 nnmn aaa aa a A ... ............ 0... 0...0 21 2221 11 • Tính chất 9: Cộng k lần hàng r vào hàng s thì định thức không đổi. 516 754 312 Tính 4/25/2018 22 2. ĐỊNH THỨC 2.3. CÁC PHƯƠNG PHÁP TÍNH ĐỊNH THỨC: • Phương pháp 1: Dùng định nghĩa. • Phương pháp 2: Sử dụng các biến đổi sơ cấp biến đổi ma trận về dạng tam giác. Phép biến đổi Tác dụng TC Đổi chỗ hai hàng Định thức đổi dấu 2 Nhân một hàng với số thực k 0 Định thức nhân k 5 Cộng k lần hàng r vào hàng s Định thức không đổi 9 • Phương pháp 3: Kết hợp hai phương pháp trên và một số tính chất của định thức. 4/25/2018 23 2. ĐỊNH THỨC 1203 3332 1311 21014 Ví dụ: Tính định thức: 4/25/2018 24 2. ĐỊNH THỨC Tính định thức cấp 3 332112322311312213 322113312312332211 aaaaaaaaa aaaaaaaaa A 4/25/2018 25 3 MA TRẬN NGHỊCH ĐẢO 3.1. Ma trận không suy biến: nếu det(A) ≠ 0. 3.2. Ma trận nghịch đảo: Cho A cấp n, nếu tồn tại B thoả: AB = BA = I thì: • B gọi là ma trận nghịch đảo của A. Ký hiệu: B = A-1 • A gọi là ma trận khả nghịch. 3.3. Sự duy nhất của ma trận nghịch đảo: Định lý: Nếu A khả nghịch thì A-1 là duy nhất. 4/25/2018 26 3 MA TRẬN NGHỊCH ĐẢO 3.4. Sự tồn tại và biểu thức ma trận nghịch đảo: Định lý: A khả nghịch det(A)≠0 và nnnn n n T ccc ccc ccc A C A A ... ............ ... ... 11 21 22212 12111 1 • CT: ma trận chuyển vị của ma trận phần bù đại số 121 212 113 AVí dụ, tìm ma trận nghịch đảo: 4/25/2018 27 3 MA TRẬN NGHỊCH ĐẢO 3.6. Phương pháp Gauss - Jordan: Sử dụng phép biến đổi sơ cấp chuyển: [A│I] = [I│A-1] Phép biến đổi 1. Đổi chỗ hai hàng 2. Nhân một hàng với một số thực k 0 3. Cộng k lần hàng r vào hàng s Ví dụ: tìm ma trận nghịch đảo: 5321 4331 6543 4321 A 4/25/2018 28 3 MA TRẬN NGHỊCH ĐẢO 3.7. Định lý: Nếu A và B là hai ma trận vuông cùng cấp và khả nghịch thì AB cũng khả nghịch và (AB)-1 = B-1A-1. 4/25/2018 29 4 HẠNG CỦA MA TRẬN 4.1. Ma trận con: • Ma trận vuông cấp p suy ra từ Amxn bằng cách bỏ đi m-p hàng và n-p cột gọi là ma trận con cấp p của A. • Định thức của ma trận con đó gọi là định thức con cấp p của A. • p min(m,n) Ví dụ: Tìm các ma trận con A 2121 4112 2431 B 24 31 A 4/25/2018 30 4 HẠNG CỦA MA TRẬN 4.2. Hạng của ma trận: • Định nghĩa: Hạng của ma trận Amxn là cấp cao nhất của định thức con khác không của A. Nếu r là hạng của ma trận thì: • Trong A tồn tại một định con cấp r khác 0. • r = min(m,n) hoặc mọi định thức con của A cấp lớn hơn r đều bằng 0. • Ký hiệu: r(A) = r Ví dụ: Tìm hạng A 2121 4112 2431 A 4/25/2018 31 4 HẠNG CỦA MA TRẬN 4.3. Ma trận bậc thang: 4.3.1. Định nghĩa: • Một dòng của ma trận được gọi là dòng 0 nếu nó chỉ gồm những phần tử 0. • Ngược lại, nếu một dòng của ma trận có ít nhất một phần tử khác 0 thì được gọi là dòng khác 0. • Phần tử khác 0 đầu tiên của một dòng được gọi là phần tử chính của dòng đó. 4/25/2018 32 4 HẠNG CỦA MA TRẬN Ma trận A được gọi là ma trận bậc thang khi thoả các điều kiện sau: • A không có dòng 0 hoặc dòng 0 luôn ở dưới các dòng khác 0. • Nếu A có ít nhất 2 dòng khác 0 thì đối với 2 dòng khác 0 tuỳ ý của A, phần tử chính của dòng dưới luôn nằm bên phải cột chứa phần tử chính của dòng trên. 0000 1000 0210 4321 A 100 042 B 000 012 432 C 310 000 021 D 4/25/2018 33 4 HẠNG CỦA MA TRẬN 4.3.2. Định lý về hạng của ma trận: Sau hữu hạn các phép biến đổi sơ cấp trên hàng của ma trận thì hạng không thay đổi. Hệ quả: Hạng của ma trận A là số dòng khác 0 của ma trận bậc thang thu được sau một số hữu hạn các phép biến đổi sơ cấp. 40132 22242 51263 11131 AVí dụ: Tìm hạng của ma trận:
File đính kèm:
- bai_giang_toan_kinh_te_1_chuong_1_ma_tran_dinh_thuc_nguyen_n.pdf