Bài giảng Tín hiệu và hệ thống - Bài 3 - Trần Quang Việt

 Trong môn học này ta tập trung khảo sát hệ thống LTI:

 Nhiều hệ thống vật lý thực tế có tính LTI

 Hệ thống LTI thỏa nguyên lý xếp chồng & bất biến: biểu diễn

tín hiệu vào thành tổng các tín hiệu cơ bản (hoặc phiên bản trễ)

 đáp ứng của hệ thống một cách dễ dàng.

 Các ví dụ về biểu diễn tính hiệu thành tổng các tính hiệu cơ bản:

 Biểu diễn tính hiệu thành tổng của các xung đơn vị

 Biểu diễn tính hiệu thành tổng các tính hiệu hàm mũ phức:

chuỗi Fourier, biến đổi Fourier, biến đổi Laplace

 Trong chương này ta khảo sát việc biểu diễn tín hiệu thành tổng các

xung đơn vị để tính đáp ứng của hệ thống dùng khái niệm đáp ứng

xung của hệ thống và tích chập.

 

pdf 12 trang kimcuc 9780
Bạn đang xem tài liệu "Bài giảng Tín hiệu và hệ thống - Bài 3 - Trần Quang Việt", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Tín hiệu và hệ thống - Bài 3 - Trần Quang Việt

Bài giảng Tín hiệu và hệ thống - Bài 3 - Trần Quang Việt
Signals & Systems – FEEE, HCMUT 
Ch-2: Phân tích hệ thống LTI trong miền thời gian 
Lecture-3 
2.1. Giới thiệu 
2.2. Hệ thống LTI: tích chập 
2.3. Các tính chất của hệ thống LTI 
Signals & Systems – FEEE, HCMUT 
2.1. Giới thiệu 
 Trong môn học này ta tập trung khảo sát hệ thống LTI: 
 Nhiều hệ thống vật lý thực tế có tính LTI 
 Hệ thống LTI thỏa nguyên lý xếp chồng & bất biến: biểu diễn 
 tín hiệu vào thành tổng các tín hiệu cơ bản (hoặc phiên bản trễ) 
 đáp ứng của hệ thống một cách dễ dàng. 
 Các ví dụ về biểu diễn tính hiệu thành tổng các tính hiệu cơ bản: 
 Biểu diễn tính hiệu thành tổng của các xung đơn vị 
 Biểu diễn tính hiệu thành tổng các tính hiệu hàm mũ phức: 
 chuỗi Fourier, biến đổi Fourier, biến đổi Laplace 
 Trong chương này ta khảo sát việc biểu diễn tín hiệu thành tổng các 
 xung đơn vị để tính đáp ứng của hệ thống dùng khái niệm đáp ứng 
 xung của hệ thống và tích chập. 
Signals & Systems – FEEE, HCMUT 
2.2. Hệ thống LTI: Tích chập 
2.2.1. Biểu diễn tín hiệu thành tổng các xung đơn vị 
2.2.2. Đáp ứng xung và biểu diễn hệ thống LTI bằng tích chập 
Signals & Systems – FEEE, HCMUT 
2.2.1. Biểu diễn tín hiệu thành tổng các xung đơn vị 
 Định nghĩa xung (t): 
1 ; 0<t<
(t)=
0; otherwise 0
lim (t)= (t)
 Biểu diễn gần đúng f(t) dùng (t): 
~
n
f (t)= f(n ) (t n )
 Biểu diễn f(t) thành tổng các (t): 
~
0
f (t)= lim f (t) f (t)= f( ) (t )d
Signals & Systems – FEEE, HCMUT 
2.2.2. Đáp ứng xung và biểu diễn hệ thống LTI bằng tích chập 
 Đáp ứng xung của hệ thống LTI: là đáp ứng của hệ thống với (t) 
Ví dụ: (a) hệ thống đơn vị y(t)=f(t) h(t)= (t) 
(b) hệ thống có phương trình: 
t
-
y(t)= f ( )d
t
-
h(t)= ( )d u(t)
 Đáp ứng của hệ thống LTI với xung (t): 
0
lim h (t)=h(t)
Signals & Systems – FEEE, HCMUT 
2.2.2. Đáp ứng xung và biểu diễn hệ thống LTI bằng tích chập 
 Đáp ứng của hệ thống LTI với tín hiệu gần đúng của f(t) 
~
n
f (t)= f(n ) (t n )Với: 
Do hệ thống LTI nên: 
~
n
y(t)= f(n )h (t n )
Signals & Systems – FEEE, HCMUT 
2.2.2. Đáp ứng xung và biểu diễn hệ thống LTI bằng tích chập 
 Đáp ứng của hệ thống LTI với tín hiệu vào f(t) 
~
0
f(t) lim f (t)= f( ) (t )dTa có: 
Suy ra: 
~
0 0
n
y(t)= lim y(t)= lim f(n )h (t n )
y(t) f( )h(t )d y(t) f(t) h(t) (tích chập) 
 Trong phân tích và thiết kế người ta hay biểu diễn mô hình hệ 
 thống LTI theo tích chập với đáp ứng xung h(t) 
Signals & Systems – FEEE, HCMUT 
2.2.2. Đáp ứng xung và biểu diễn hệ thống LTI bằng tích chập 
 Tính tích chập: f(t) h(t)= f( )h(t )d
(Lưu ý: ta sẽ tính tích phân trên tính theo thang thời gian còn t là 
tham số cũng chính là biến thời gian của kết quả) 
 Xác định h(t- ) theo biến : 
 Nhân f( ) với h(t- ) 
 Lấy tích phân trên toàn thang 
Signals & Systems – FEEE, HCMUT 
2.2.2. Đáp ứng xung và biểu diễn hệ thống LTI bằng tích chập 
 Ví dụ: cho f(t)=e-atu(t); a>0 là ngỏ vào của hệ thống LTI có đáp 
 ứng xung h(t)=u(t). Xác định đáp ứng y(t) của hệ thống? 
f(t) h(t)=0
t
a at1
a
0
f(t) h(t)= e d (1-e )
at1
a
y(t)=f(t) h(t)= (1-e )u(t)
t<0 
t>0 
Signals & Systems – FEEE, HCMUT 
2.3. Các tính chất của hệ thống LTI 
 Tính giao hoán: 
+
y(t)=f(t) h(t)= f ( )h(t )d
Đặt: 1 t 1t 1d d
1 1 1 1 1 1
+
y(t)= f (t )h( )d h( )f(t ) =h(t) f(t)d
 Tính phân phối: 1 2 1 2y(t)=f(t) [h (t)+h (t)]=f(t) h (t)+f(t) h (t)
Signals & Systems – FEEE, HCMUT 
2.3. Các tính chất của hệ thống LTI 
 Tính kết hợp: 1 2 1 2y(t)=[f(t) h (t)] h (t)=f(t) [h (t) h (t)]
 Hệ thống LTI không nhớ: h(t)=K (t) 
y(t)=f(t) h(t)=f(t) K (t)=Kf(t)
 Tính khả ngịch: ta dễ dàng chứng minh được hệ thống nghịch đảo 
 của một hệ thống LTI cũng là hệ thống LTI. Do đó hệ thống LTI 
 khả nghịch khi tồn tại hi(t) sao cho ih(t) h (t)= (t)
Signals & Systems – FEEE, HCMUT 
2.3. Các tính chất của hệ thống LTI 
 Tính nhân quả: hệ thống LTI nhân quả khi h(t)=0 khi t<0 
+ +
0
y(t)=f(t) h(t)= f ( )h(t )d h( )f(t )d
 Tính ổn định: giả sử tín hiệu vào bị chặn |f(t)| B 
+ +
| y(t)|=|f(t) h(t)|=| f ( )h(t )d | | h( )f(t )d |
+
| y(t)| |h( ) || f(t )|d
+
| y(t)| |h( ) | dB
Vậy hệ thống LTI ổn định khi: hữu hạn 
+
|h( ) | d
 Đáp ứng của hệ thống LTI với u(t): 
+ t
s(t)=u(t) h(t)= h( )u(t )d h( )d
ds(t)
h(t)=
dt

File đính kèm:

  • pdfbai_giang_tin_hieu_va_he_thong_bai_3_tran_quang_viet.pdf