Bài giảng Digital Signal Processing - Chương 5: z-Transform - Nguyễn Thanh Tuấn
Example 1
Determine the z-transform of the following finite-duration signals
z-Transform
a) x1(n)=[1, 2, 5, 7, 0, 1]
b) x2(n)=x1(n-2)
c) x3(n)=x1(n+2)
d) x4(n)=(n)
e) x5(n)=(n-k), k>0
f) x6(n)=(n+k), k>0Digital Signal Processing
Example 2
Determine the z-transform of the signal
z-Transform
a) x(n)=(0.5)nu(n)
b) x(n)=-(0.5)nu(-n-1)
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Digital Signal Processing - Chương 5: z-Transform - Nguyễn Thanh Tuấn", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Digital Signal Processing - Chương 5: z-Transform - Nguyễn Thanh Tuấn
Click to edit Master subtitle style Nguyen Thanh Tuan, M.Eng. Department of Telecommunications (113B3) Ho Chi Minh City University of Technology Email: nttbk97@yahoo.com z-Transform Chapter 5 Digital Signal Processing 2 The z-transform is a tool for analysis, design and implementation of discrete-time signals and LTI systems. Convolution in time-domain multiplication in the z-domain z-Transform Digital Signal Processing Content 3 z-Transform 1. z-transform 2. Properties of the z-transform 3. Causality and Stability 4. Inverse z-transform Digital Signal Processing 1. The z-transform 4 The z-transform of a discrete-time signal x(n) is defined as the power series: z-Transform 2 1 2( ) ( ) ( 2) ( 1) (0) (1) (2)n n X z x n z x z x z x x z x z The region of convergence (ROC) of X(z) is the set of all values of z for which X(z) attains a finite value. })()(|C{ n nznxzXzROC The z-transform of impulse response h(n) is called the transform function of the filter: n nznhzH )()( Digital Signal Processing Example 1 5 Determine the z-transform of the following finite-duration signals z-Transform a) x1(n)=[1, 2, 5, 7, 0, 1] b) x2(n)=x1(n-2) c) x3(n)=x1(n+2) d) x4(n)=(n) e) x5(n)=(n-k), k>0 f) x6(n)=(n+k), k>0 Digital Signal Processing Example 2 6 Determine the z-transform of the signal z-Transform a) x(n)=(0.5)nu(n) b) x(n)=-(0.5)nu(-n-1) Digital Signal Processing z-transform and ROC 7 It is possible for two different signal x(n) to have the same z- transform. Such signals can be distinguished in the z-domain by their region of convergence. z-Transform z-transforms: and their ROCs: ROC of a causal signal is the exterior of a circle. ROC of an anticausal signal is the interior of a circle. Digital Signal Processing Example 3 8 Determine the z-transform of the signal z-Transform )1()()( nubnuanx nn The ROC of two-sided signal is a ring (annular region). Digital Signal Processing 2. Properties of the z-transform 9 Linearity: z-Transform 111 ROCwith)()( zXnx z 222 ROCwith)()( zXnx z if and then 212121 ROCROCROCwith)()()()()()( zXzXzXnxnxnx z Example: Determine the z-transform and ROC of the signals a) x(n)=[3(2)n-4(3)n]u(n) b) x(n)=cos(w0 n)u(n) c) x(n)=sin(w0 n)u(n) Digital Signal Processing 2. Properties of the z-transform 10 Time shifting: z-Transform )()( zXnx z )()( zXzDnx Dz if then The ROC of is the same as that of X(z) except for z=0 if D>0 and z= if D<0. )(zXz D Example: Determine the z-transform of the signal x(n)=2nu(n-1). Convolution of two sequence: if and )()()()()()( 2121 zXzXzXnxnxnx z then the ROC is, at least, the intersection of that for X1(z) and X2(z). Example: Compute the convolution of x=[1 1 3 0 2 1] and h=[1, -2, 1] ? )()( 11 zXnx z )()( 22 zXnx z Digital Signal Processing 2. Properties of the z-transform 11 Time reversal: z-Transform if then Example: Determine the z-transform of the signal x(n)=u(-n). 21 || :ROC)()( rzrzXnx z 12 1 1|| r 1 :ROC)()( r zzXnx z Scaling in the z-domain: 21 || :ROC)()( rzrzXnx z if 21 1 |||||| :ROC)()( razrazaXnxa zn then for any constant a, real or complex Example: Determine the z-transform of the signal x(n)=ancos(w0n)u(n). Digital Signal Processing 3. Causality and stability 12 z-Transform will have z-transform A causal signal of the form )()()( 2211 nupAnupAnx nn ||max||ROC 11 )( 1 2 2 1 1 1 i i pz zp A zp A zX the ROC of causal signals are outside of the circle. A anticausal signal of the form )1()1()( 2211 nupAnupAnx nn ||min||ROC 11 )( 1 2 2 1 1 1 i i pz zp A zp A zX the ROC of causal signals are inside of the circle. Digital Signal Processing 3. Causality and stability 13 z-Transform Mixed signals have ROCs that are the annular region between two circles. It can be shown that a necessary and sufficient condition for the stability of a signal x(n) is that its ROC contains the unit circle. Digital Signal Processing 4. Inverse z-transform 14 z-Transform ROC ),()( transformz zXnx )(ROC ),( transform-z inverse nxzX In inverting a z-transform, it is convenient to break it into its partial fraction (PF) expression form, i.e., into a sum of individual pole terms whose inverse z transforms are known. ROC),()( zXnx z Note that with we have signals) l(anticausa |a||z| ROC if )1( signals) (causal |a||z| ROC if)( )( nua nua nx n n 1-az-1 1 )( zX Digital Signal Processing Partial fraction expression method 15 z-Transform In general, the z-transform is of the form The poles are defined as the solutions of D(z)=0. There will be M poles, say at p1, p2,,pM . Then, we can write )1()1)(1()( 112 1 1 zpzpzpzD M If N < M and all M poles are single poles. where M M N N zaza zbzbb zD zN zX 1 0 1 10 1)( )( )( Digital Signal Processing Example 4d 16 z-Transform Compute all possible inverse z-transform of Solution: - Find the poles: 1-0.25z-2 =0 p1=0.5, p2=-0.5 - We have N=1 and M=2, i.e., N < M. Thus, we can write where Digital Signal Processing Example 5od 17 z-Transform Digital Signal Processing Partial fraction expression method 18 z-Transform If N=M Where and for i=1,,M If N> M Digital Signal Processing Example 6 19 z-Transform Compute all possible inverse z-transform of Solution: - Find the poles: 1-0.25z-2 =0 p1=0.5, p2=-0.5 - We have N=2 and M=2, i.e., N = M. Thus, we can write where Digital Signal Processing Example 6 (cont.) 20 z-Transform Digital Signal Processing Example 7 (cont.) 21 z-Transform Determine the causal inverse z-transform of Solution: - We have N=5 and M=2, i.e., N > M. Thus, we have to divide the denominator into the numerator, giving Digital Signal Processing Partial fraction expression method 22 z-Transform Complex-valued poles: since D(z) have real-valued coefficients, the complex-valued poles of X(z) must come in complex-conjugate pairs Considering the causal case, we have Writing A1 and p1 in their polar form, say, with B1 and R1 > 0, and thus, we have As a result, the signal in time-domain is Digital Signal Processing Example 8 23 z-Transform Determine the causal inverse z-transform of Solution: Digital Signal Processing Example 8 (cont.) 24 z-Transform Digital Signal Processing Some common z-transform pairs 25 z-Transform Digital Signal Processing Review 26 Định nghĩa biến đổi z Ý nghĩa miền hội tụ của biến đổi z Mối liên hệ giữa miền hội tụ với đặc tính nhân quả và ổn định của tín hiệu/hệ thống-LTI rời rạc. Biến đổi z của một số tín hiệu cơ bản: (n), anu(n), anu(-n-1) Một số tính chất cơ bản (tuyến tính, trễ, tích chập) của biến đổi z Phân chia đa thức và biến đổi z ngược z-Transform Digital Signal Processing Homework 1 27 z-Transform Digital Signal Processing Homework 2 28 z-Transform Digital Signal Processing Homework 3 29 z-Transform Digital Signal Processing Homework 4 30 z-Transform Digital Signal Processing Homework 5 31 z-Transform Digital Signal Processing Homework 6 32 Tìm biến đổi z và miền hội tụ của các tín hiệu sau: 1) (n + 2) – (n – 2) 2) u(n – 2) 3) u(n + 2) 4) u(n + 2) – u(n – 2) 5) u(–n) 6) u(n) + u(–n) 7) u(n) – u(–n) 8) u(1–n) 9) u(|n|) 10) 2nu(–n) 11) 2nu(n–1) 12) 2nu(1–n) z-Transform Digital Signal Processing Homework 7 33 Tìm biến đổi z và miền hội tụ của các tín hiệu sau: 1) cos( n)u(n) 2) cos( n/2)u(n) 3) sin( n/2)u(n) 4) cos( n/3)u(n) 5) sin( n/3)u(n) 6) cos( n)u(n-1) 7) cos( n)u(1-n) 8) cos( n)u(-n-1) 9) 2ncos( n/2)u(n) 10) 2nsin( n/2)u(n) 11) 3ncos( n/3)u(n) 12) 3nsin( n/3)u(n) z-Transform Digital Signal Processing Homework 8 34 Liệt kê giá trị các mẫu (n=0, 1, 2, 3) của tín hiệu nhân quả có biến đổi z sau: 1) 2z -1 /(1 – 2z -1) 2) 2z -1 /(1 + 2z -1) 3) 2/(1 – 4z -2) 4) 2/(1 + 4z -2) 5) 2z -1 /(1 – 4z -2) 6) 2z -1 /(1 + 4z -2) 7) 2z -2 /(1 – 4z -2) 8) 2z -2 /(1 + 4z -2) 9) 2z -1 /(1 – z -1 – 2z -2) 10) 2z -2 /(1 – z -1 – 2z -2) 11) 2z -1 /(1 – 3z -1 + 2z -2) 12) 2z -2 /(1 – 3z -1 + 2z -2) z-Transform
File đính kèm:
- bai_giang_digital_signal_processing_chuong_5_z_transform_ngu.pdf