Bài giảng Biến đổi năng lượng điện cơ - Bài 1: Giới thiệu về hệ thống điện. Tổng quan - Nguyễn Quang Nam

Tổng quan (tt)

 Nguồn phát: gồm các nhà máy nhiệt điện (than, khí tự

nhiên, dầu, .), thủy điện (nước – tái sinh), điện hạt nhân (an

toàn nghiêm ngặt).

 Điện áp tại đầu ra của các nguồn phát được nâng lên để

thuận tiện cho việc truyền tải qua các hệ thống truyền tải và

truyền tải phụ.

 Các khách hàng sỉ và một số khách hàng công nghiệp

mua điện tại các trạm trung áp (34 kV)

 Hệ thống phân phối tiếp tục hạ cấp điện áp và phân phối

điện năng đến các khách hàng thương mại và dân dụng.

 Biến đổi năng lượng điện cơ đóng vai trò chính trong

những hệ thống thành phần: máy phát (generator), máy ngắt

(circuit breaker), động cơ (motor), máy biến áp (transformer).

pdf 24 trang kimcuc 12020
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Biến đổi năng lượng điện cơ - Bài 1: Giới thiệu về hệ thống điện. Tổng quan - Nguyễn Quang Nam", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Biến đổi năng lượng điện cơ - Bài 1: Giới thiệu về hệ thống điện. Tổng quan - Nguyễn Quang Nam

Bài giảng Biến đổi năng lượng điện cơ - Bài 1: Giới thiệu về hệ thống điện. Tổng quan - Nguyễn Quang Nam
1Bài giảng 1
408001
Biến đổi năng lượng điện cơ
Giảng viên: TS. Nguyễn Quang Nam
2013 – 2014, HK2
nqnam@hcmut.edu.vn
2Bài giảng 1
Giới thiệu về hệ thống điện – Tổng quan
 Bốn phần tử cơ bản trong một hệ thống điện: hệ thống 
phát điện, hệ thống truyền tải, hệ thống phân phối, và tải
Khách
hàng sỉ
Khách
hàng CN
Khách
hàng TM
Kh/hàng
dân dụng
Nguồn
phát
Hệ thống
truyền tải
Hệ thống
truyền tải phụ
Hệ thống
phân phối
3Bài giảng 1
Tổng quan (tt)
 Nguồn phát: gồm các nhà máy nhiệt điện (than, khí tự
nhiên, dầu, ...), thủy điện (nước – tái sinh), điện hạt nhân (an 
toàn nghiêm ngặt).
 Điện áp tại đầu ra của các nguồn phát được nâng lên để
thuận tiện cho việc truyền tải qua các hệ thống truyền tải và
truyền tải phụ.
 Các khách hàng sỉ và một số khách hàng công nghiệp 
mua điện tại các trạm trung áp (34 kV).
4Bài giảng 1
Tổng quan (tt)
 Hệ thống phân phối tiếp tục hạ cấp điện áp và phân phối 
điện năng đến các khách hàng thương mại và dân dụng.
 Biến đổi năng lượng điện cơ đóng vai trò chính trong 
những hệ thống thành phần: máy phát (generator), máy ngắt 
(circuit breaker), động cơ (motor), máy biến áp (transformer).
5Bài giảng 1
Quá trình phi tập trung hóa ngành điện
 Phân loại các tổ chức: công ty phát điện, công ty truyền tải, 
công ty phân phối, và nhà điều hành độc lập hệ thống (ISO).
Nguồn phát
Truyền tải
và
Phân phối
Khách hàng
Truyền tải
và
Phân phối
Nhà ĐH
độc lập
hệ thống
Cty phát điệnCty phát điện
Khách hàng Khách hàng
Nhà kinh doanh thị trường
. . .
. . .
6Bài giảng 1
Động học hệ thống điện và các phần tử
 Toàn bộ hệ thống điện là một hệ thống động, được mô tả
bởi một hệ phương trình vi phân dưới dạng (không gian 
trạng thái)
( )uxfx ,=&
với vectơ trạng thái x và vectơ ngõ vào u tương ứng là các 
vectơ n và r chiều. Kích thước của x là rất lớn, và khung thời 
gian của đáp ứng trải từ vài miligiây (quá độ điện từ), đến vài 
giây (điều khiển tần số), hoặc vài giờ (động cơ nồi hơi).
7Bài giảng 1
Động học hệ thống điện và các phần tử (tt)
 Việc mô hình hóa hệ thống dựa vào các nguyên tắc vật lý 
và dạng tĩnh của các phương trình Maxwell là một bước 
quan trọng trong quá trình phân tích hệ thống về đáp ứng 
trong miền thời gian, đáp ứng xác lập hình sin, điểm ổn định, 
tính ổn định, ...
8Bài giảng 1
Hệ thống điện cơ
 Môn học xem xét hai loại hệ thống điện cơ: hệ thống 
tịnh tiến và hệ thống quay. Hệ thống tịnh tiến được dùng 
trong các rơle điện cơ, và cơ cấu chấp hành, và thường 
dễ phân tích.
 Các hệ thống quay thường phức tạp hơn, do đó việc 
phân tích được dừng lại ở phân tích xác lập hình sin 
bằng giản đồ vectơ và mạch tương đương.
9Bài giảng 1
Hệ thống điện cơ (tt)
 Khi mạch tương đương đã được rút ra, các khía cạnh 
cơ học cũng sẽ được thể hiện trong đó. Việc này được 
thực hiện cho các loại máy điện đồng bộ, không đồng 
bộ, và một chiều. Các máy điện một pha chỉ được phân 
tích định tính.
10Bài giảng 1
 Giả thiết điện áp và dòng điện hình sin, nghĩa là
Ôn tập về công suất
( ) ( )vm tVtv θω += cos ( ) ( )im tIti θω += cos
 Công suất tức thời cho bởi (i = Im khi t = 0)
( ) ( ) ( ) ( ) ( )ttIVtitvtp ivmm ωθθω coscos −+==
 Công suất trung bình trong khoảng thời gian T
( ) ( ) ( )∫∫ ==
TT
dttitv
T
dttp
T
P
00
11
11Bài giảng 1
Ôn tập về công suất (tt)
 Công suất trung bình (thực hay tác dụng) trong 1 chu kỳ T 
= 2pi/ω
( ) ( )ivrmsrmsivmm IVIVP θθθθ −=−= coscos2
với Vrms và Irms tương ứng là điện áp và dòng điện hiệu 
dụng. θ = θv − θi được gọi là góc hệ số công suất, và cos(θ) 
được gọi là hệ số công suất (PF).
12Bài giảng 1
Ôn tập về vectơ pha
Tải cảm có hệ số công suất trễ, và tải dung có hệ số công suất sớm.
 Các đại lượng hình sin có thể được biểu diễn ở dạng 
vectơ pha, chẳng hạn
vrmsVV θ∠= irmsII θ∠=
Góc phaBiên độ
+
V
I
vθ
iθ
Hệ số công suất trễ
V
I
vθ
iθ
Hệ số công suất sớm
+
13Bài giảng 1
Ví dụ tại lớp
 Vd. 2.1: Biểu diễn v(t) và i(t) đã cho ở dạng vectơ và tìm 
công suất trung bình P
( ) ( ) 00 301030cos102 ∠=⇒+= Vttv ω
( ) ( ) 00 20520cos52 −∠=⇒−= Itti ω
( ) 0502030 =−−=−= iv θθθ (HSCS trễ)
( )( ) ( ) W14,3250cos510 0 ==P
14Bài giảng 1
Ví dụ tại lớp (tt)
 Vd. 2.2: Tính lại công suất trung bình P với dòng điện i(t) 
mới 
( ) ( ) 00 90590cos52 −∠=⇒−= Itti ω
( )( ) ( ) W25120cos510 0 −==P (phát công suất!)
 Chú ý quy ước công suất: công suất dương cho tải, công 
suất âm cho nguồn.
15Bài giảng 1
Ôn tập về công suất phức
 Định nghĩa công suất phản kháng bởi
( ) ( )ivrmsrmsivmm IVIVQ θθθθ −=−= sinsin2
 Công suất tức thời có thể được biểu diễn
( ) ( ) ( ) ( )[ ] ( )tQtPtQtPPtp ωωωω 2sin2cos12sin2cos −+=−+=
 Vì và , có thể thấyvj
rmseVV
θ
=
ij
rmseII
θ
=
( ) ( )ivrmsrms IVIVP θθ −=⋅= cosRe *
( ) ( )ivrmsrms IVIVQ θθ −=⋅= sinIm *
16Bài giảng 1
Ôn tập về công suất phức (tt)
 Công suất phức được định nghĩa là
( ) jQPIVS +=⋅= *
 Khi tính toán công suất, các giá trị hiệu dụng luôn luôn 
được dùng. Do đó, từ đây về sau sẽ không ghi chỉ số rms
trong các ký hiệu
 Và độ lớn của công suất phức là
( )ivVIP θθ −= cos ( )ivVIQ θθ −= sin
VIS =
17Bài giảng 1
Ôn tập về công suất phức (tt)
 Để phân biệt S, P, và Q, các đơn vị của chúng lần lượt là
voltamperes (VA), watts (W), và voltampere reactive (VAR).
 Các dạng khác của công suất phức
jXRZ +=
IZV =
( ) jQPjXRIZIIIZS +=+=== 22*
Do đó
RIP 2= XIQ 2=
18Bài giảng 1
Ví dụ tại lớp
 Vd. 2.4: Tìm công suất phức với v(t) và i(t) đã cho 
( ) ( ) 00 101010cos102 ∠=⇒+= Vttv ω
( ) ( ) 00 202070sin202 −∠=⇒+= Itti ω
 W2,173=P
( ) ( )( ) VA 1002,1733020020201010 000* jIVS +=∠=∠∠==
VAR 100=Q
19Bài giảng 1
Ví dụ tại lớp
 Vd. 2.5: Với mạch trong hình 2.5, tính công suất phức của 
từng nhánh, công suất phức toàn mạch, công suất thực và
phản kháng của từng nhánh và toàn mạch.
A 45354,0
100100
9050
1
1
1 °∠=+
°∠
== jZ
VI
A 135707,0
5050
9050
2
1
2 °∠=
−
°∠
== jZ
VI
VA 4568,1745354,09050*111 °∠=°−∠×°∠== IVS
VA 4535,35135707,09050*212 °−∠=°−∠×°∠== IVS
20Bài giảng 1
Ví dụ tại lớp
 Vd. 2.5 (tt):
 W12,5354,0100 2100 =×=P
Công suất thực trên các nhánh:
VA 43,1853,395,125,3721 °∠=−=+= jSSST
Công suất phức toàn mạch:
 W25707,050 250 =×=P
Công suất thực toàn mạch:
 W5,3750100 =+= PPP
21Bài giảng 1
Ví dụ tại lớp
 Vd. 2.5 (tt):
( ) VAR 12,5354,0100 2100 =×=Q
Công suất phản kháng trên các nhánh:
( ) VAR 52707,050 250 −=×−=Q
Công suất phản kháng toàn mạch:
VAR 5,1250100 −=+= QQQ
22Bài giảng 1
Bảo toàn công suất phức
 Trong mạch nối tiếp
 Trong mạch song song
( )
n
n
SSS
IVVVIVS
+++=
+++=⋅=
...
...
21
*
21
*
( )
n
n
SSS
IIIVIVS
+++=
+++=⋅=
...
...
21
*
21
*
23Bài giảng 1
Bảo toàn công suất phức (tt)
 Trong cả hai trường hợp trên, công suất phức tổng là
tổng các công suất phức thành phần. Hầu hết tải được nối 
song song. Cũng có thể rút ra
 Tam giác công suất: xem ví dụ 2.7
nPPPP +++= ...21 nQQQQ +++= ...21
 Với các tải bao gồm cả nhánh song song và nối tiếp, lần 
lượt áp dụng sự bảo toàn công suất cho các trường hợp nối 
tiếp và song song, ta vẫn có sự bảo toàn công suất phức.
24Bài giảng 1
Ví dụ tại lớp
 Vd. 2.7: Tìm công suất phức ở dạng tam giác công suất
P = 800 W
Q = 600
VAR
S =
100
0 V
A
36,80
( )( ) VA 6008008,3610008,261010100 0*00* jIVS +=∠=−∠∠==
Do đó
 W800=P VAR 600=Q
VA 1000=VI
Vì θ > 0, dòng điện chậm pha so 
với điện áp, và tải mang tính cảm.
25Bài giảng 1
Ví dụ tại lớp
 Vd. 2.8: Cho biết điện áp và dòng điện tải tiêu thụ. Xác định 
công suất phức và biểu diễn ở dạng tam giác công suất
P = 433 W
Q = 250
VARS
 =
 500
 VA
30º
( )( ) VA 2504333050040510100* jIVS −=°−∠=°−∠°∠==
Do đó
 W433=P VAr 250=Q
VA 500=VI
Vì θ < 0, dòng điện sớm pha so với 
điện áp, và tải mang tính dung.
26Bài giảng 1
Ví dụ tại lớp
 Vd. 2.9: Hai tải ở ví dụ 2.7 và 2.8 được ghép song song 
như trong hình 2.10. Tính công suất phức và dòng điện bằng 
các phương pháp dòng nút và tam giác công suất.
( )( ) VA 34912348,151282796,582,1210100 0* jIVS +=°∠=°∠∠==
Phương pháp dòng nút
A 796,582,124058,261021 °−∠=°∠+°−∠=+= III
Công suất phức tổng
Dòng điện tổng
27Bài giảng 1
Ví dụ tại lớp
 Vd. 2.9 (tt):
P1 = 800 W
Q1 = 600 VAR
S = 12
82 VA
15,8º
Phương pháp tam giác công suất
( )
( ) ( ) VA 3501233250600433800
250433)600800(21
jj
jjSSS
+=−++=
−++=+=
P2 = 433 W
Q2 = -250 VAR
28Bài giảng 1
Ví dụ tại lớp
 Vd. 2.10: Khảo sát tiếp ví dụ 2.9. Xác định hệ số công suất 
toàn mạch, công suất phản kháng của bộ tụ thêm vào để
nâng PF lên 0,98, và lên 1.
( ) ( ) VAR 25011/0,9812331/1 22 =−=−= PFPQnew
Hệ số công suất của toàn mạch
( ) 962,08,15cos =°=PF
Khi lắp thêm tụ điện vào, một phần công suất phản kháng của 
tải sẽ do tụ điện cung cấp. Công suất phản kháng mới mà
nguồn cung cấp sẽ là
trễ
29Bài giảng 1
Ví dụ tại lớp
 Vd. 2.10 (tt):
So với yêu cầu của tải là 350 VAR, còn một lượng công suất 
phản kháng nữa (bằng giá trị chênh lệch giữa yêu cầu của tải 
và đáp ứng từ nguồn) cần được cung cấp từ tụ điện.
VAR 100350250 −=−=−= oldnewcap QQQ
Dấu trừ khẳng định tính dung của thiết bị mắc thêm vào.
Khi hệ số công suất tổng là 1, nguồn sẽ không cung cấp công 
suất phản kháng, do đó
VAR 3503500 −=−=−= oldnewcap QQQ
30Bài giảng 1
Biểu diễn công suất của một tải
 Công suất tiêu thụ bởi tải có thể được biểu diễn bằng một 
tổ hợp của 3 trong 6 đại lượng sau: V, I, PF (trễ hay sớm), 
S, P, Q.
 Nếu và là cho trước, sẽ tương đương với cho trước 
V, I, và PF.
V I
 Một cách khác là cho biết V, PF, và P. Ba đại lượng còn 
lại được tính theo: 
θcosV
PI = θsinVIQ = jQPS +=
31Bài giảng 1
Biểu diễn công suất của một tải (tt)
 Cách thứ ba là cho biết V, PF, và S: I được tính từ V và
S, sau đó Q có thể được tính từ S và PF
 Cách sau cùng là cho biết V, P, và Q: S được tính từ P và
Q, sau đó PF được tính từ P và S
V
SI = ( )21 PFSQ −=
22 QPS += S
PPF =
32Bài giảng 1
 Điện áp ở mỗi pha lệch pha so với các pha khác 1200. 
Với thứ tự thuận (a-b-c), các điện áp cho bởi
Các hệ thống 3 pha
 Có hai cách nối 3 pha: cấu hình sao (Y) và cấu hình tam 
giác (∆)
( )tVv maa ωcos' =
( )0
'
120cos −= tVv mbb ω
( )0
'
120cos += tVv mcc ω
33Bài giảng 1
Hệ thống 3 pha nối sao (Y)
Trong cấu hình sao, các đầu dây a’, b’, và c’ được nối với 
nhau và được ký hiệu là cực trung tính n.
ia, ib, và ic là các dòng điện dây, 
cũng bằng với các dòng điện 
pha. in là dòng điện trong dây 
trung tính.
ia
in
ib
ic
a
b
c
n
+
−
+
−
+
−
34Bài giảng 1
Hệ thống 3 pha nối tam giác (∆)
Trong cấu hình tam giác, đầu a’ được nối vào b, và b’ vào c. 
Vì vac’ = vaa’(t) + vbb’(t) + vcc’(t) = 0, như có thể chứng minh bằng 
toán học, c’ được nối vào a.
ia
ib
ic
a
b
c
c’
a’
b’
+
− +
−
+−
35Bài giảng 1
Các hệ thống 3 pha (tt)
 Các đại lượng dây và pha
Vì cả nguồn lẫn tải đều có thể ở dạng sao hay tam giác, 
có thể có 4 tổ hợp: sao-sao, sao-tam giác, tam giác-sao, 
và tam giác-tam giác (quy ước nguồn-tải).
Môn học chỉ xét đến điều kiện làm việc cân bằng của các 
mạch điện 3 pha.
• Với cấu hình sao-sao, ở điều kiện cân bằng:
00∠= φVVan
0120−∠= φVVbn
0120∠= φVVcn
36Bài giảng 1
Các hệ thống 3 pha (tt)
với Vφ là trị hiệu dụng của điện áp pha-trung tính.
Các điện áp dây cho bởi
bnanab VVV −= cnbnbc VVV −= ancnca VVV −=
Chẳng hạn, độ lớn của có thể tính như sau
abV
( ) φφ VVVab 330cos2 0 ==
anV
bnV
cnV
abV
bcV
caV
Từ giản đồ vectơ, có thể thấy
0303 ∠= φVVab 0903 −∠= φVVbc
01503 ∠= φVVca
Ở điều kiện cân bằng, in = 0 (không có dòng điện trung tính).
37Bài giảng 1
Các hệ thống 3 pha (tt)
Không làm mất tính tổng quát, giả thiết các điện áp dây là
• Cấu hình sao-tam giác, điều kiện cân bằng: 
00∠= Lab VV
0120−∠= Lbc VV
0120∠= Lca VV
abV
bcV
caV
1I
3I
2I
aI
Các dòng điện pha I1, I2, và I3 trong 3 
nhánh tải nối tam giác trễ pha so với các 
điện áp tương ứng một góc θ, và có cùng 
độ lớn Iφ. Có thể thấy từ giản đồ vectơ
θφ −−∠= 0303II a θφ −−∠= 01503II b
θφ −∠= 0903IIc
 Cấu hình Y: và , cấu hình ∆: vàφVVL 3= φII L = φVVL =
φII L 3=
38Bài giảng 1
Công suất trong mạch 3 pha cân bằng
 Tải nối sao cân bằng
Trong một hệ cân bằng, độ lớn của tất cả điện áp pha là
bằng nhau, và độ lớn của tất cả dòng điện cũng vậy. Gọi 
chúng là Vφ và Iφ. Công suất mỗi pha khi đó sẽ là
( )θφφφ cosIVP =
Công suất tổng là ( ) ( )θθφφφ cos3cos33 LLT IVIVPP ===
Công suất phức mỗi pha là θφφφφφ ∠== IVIVS *
Và tổng công suất phức là θθφφφ ∠=∠== LLT IVIVSS 333
Chú ý rằng θ là góc pha giữa điện áp pha và dòng điện pha
39Bài giảng 1
Công suất trong mạch 3 pha cân bằng (tt)
 Tải nối tam giác cân bằng
Tương tự như trường hợp tải nối sao cân bằng, công suất 
mỗi pha và công suất tổng có thể được tính toán với cùng 
công thức. Có thể thấy rằng với tải cân bằng, biểu thức tổng 
công suất phức là giống nhau cho cả cấu hình sao lẫn tam 
giác, miễn là điện áp dây và dòng điện dây được dùng trong 
biểu thức.
Do đó, các tính toán có thể được thực hiện trên nền tảng 3 
pha hay 1 pha.
 Vd. 2.12 và 2.13: xem giáo trình
40Bài giảng 1
Ví dụ tại lớp
 Vd. 2.12: Mạch 3 pha Y cân bằng có tải tiêu thụ 24 kW ở PF 
bằng 0,8 trễ. Điện áp dây là 480 V. Xác định vectơ pha dòng 
điện dây và điện áp pha. Chọn điện áp pha của pha a làm 
gốc, , hãy biểu diễn các vectơ pha dòng điện dây 
và điện áp dây. Xác định công suất phức của tải 3 pha.
V 277,1
3
480
==φV
Giá trị điện áp pha
°∠= 0φVVan
Công suất tác dụng trên mỗi pha
kW 83/24 ==φP
41Bài giảng 1
Ví dụ tại lớp
 Vd. 2.12 (tt):
( ) °== − 87,368,0cos 1θ
Giá trị dòng điện dây (cũng là dòng điện pha, vì tải nối Y)
Do đó
A 09,36
8,01,277
8000
=
×
== φIIL
Góc hệ số công suất
A 87,3609,36 °−∠=aI (vì PF trễ)
A 87,15609,36 °−∠=bI
A 87,27609,36 °−∠=cI
42Bài giảng 1
Ví dụ tại lớp
 Vd. 2.12 (tt):
( ) kVA 182487,3609,36.480.33 jIVS LLT +=°∠=∠= θ
Các điện áp dây tương ứng
Công suất phức 3 pha
V 30480 °∠=abV
V 90480 °−∠=bcV
V 210480 °−∠=caV
43Bài giảng 1
Mạch tương đương 1 pha
 Biến đổi tam giác-sao (∆-Y)
Cho một tải nối tam giác với tổng trở mỗi pha là Z∆, mạch 
tương đương hình sao có tổng trở pha ZY = Z∆/3. Điều này 
có thể được chứng minh bằng cách đồng nhất tổng trở giữa 
hai pha bất kỳ trong cả hai trường hợp.
Thay vì phân tích mạch hình tam giác, mạch tương đương 
1 pha có thể được dùng sau khi thực hiện việc biến đổi tam 
giác-sao.
44Bài giảng 1
Ví dụ tại lớp
 Vd. 2.14: Vẽ mạch tương đương 1 pha của 1 mạch đã 
cho.
Thay thế bộ tụ nối tam giác bởi một bộ tụ nối sao có tổng 
trở pha –j15/3 = -j5 Ω. Sau đó có thể dùng mạch nối sao 
tương đương để đơn giản hóa, và rút ra mạch tương 
đương 1 pha.
45Bài giảng 1
Ví dụ tại lớp (tt)
 Vd. 2.15: 10 động cơ không đồng bộ vận hành song 
song, tìm định mức kVAR của bộ tụ 3 pha để cải thiện hệ
số công suất tổng thành 1?
Công suất thực mỗi pha là 30 x 10 / 3 = 100 kW, ở PF = 0,6
trễ. Công suất kVA mỗi pha như vậy sẽ là 100/0,6. Do đó,
( ) ( )
kVA j133,33100
VA 8,06,0
6,0
101006,0cos
3
1
+=
+
×
=∠= − jSS φφ
46Bài giảng 1
Ví dụ tại lớp (tt)
 Vd. 2.15 (tt):
Một bộ tụ có thể được nối song song với tải để cải thiện 
hệ số công suất tổng. Bộ tụ cần cung cấp toàn bộ công 
suất phản kháng để nâng PF thành đơn vị. Nghĩa là cho 
mỗi pha Qcap = −133,33 kVAR, và dung lượng kVAR tổng 
cộng cần thiết sẽ là 3(−133,33) = −400 kVAR. 
47Bài giảng 1
Ví dụ tại lớp (tt)
 Vd. 2.16: Giả sử trong Vd. 2.15, PF mới là 0,9 trễ, dung 
lượng kVAR cần thiết là bao nhiêu?
PF mới là 0,9 trễ, do đó công 
suất phản kháng mỗi pha mới là
kVA j133,33100 +=φS
( ) ( )
kVAR 43,48
19,0110011 22
=
−=−= PFPQnew
cũ
mớ
i
100 kW
48,43
kVAR
133,33
kVAR
48Bài giảng 1
Ví dụ tại lớp (tt)
 Vd. 2.16 (tt):
Bộ tụ do đó cần cung cấp cho mỗi pha −133,33 + 48,43 = 
−84,9 kVAR, và tổng dung lượng kVAR cần thiết sẽ là
3(−84,9) = −254,7 kVAR. 
 Vd. 2.17: xem giáo trình

File đính kèm:

  • pdfbai_giang_bien_doi_nang_luong_dien_co_nguyen_quang_nam.pdf